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ABSTRACT
Cuckoo Search (CS) is an evolutionary computational (EC) algorithm inspired by the behavior  
of a cuckoo bird, introduced by Yang and Deb in 2009 to solve various engineering-intensive 
optimization problems. However, this metaheuristic algorithm, CS, still suffers from premature 
convergence, mainly due to multimodal problems leading to local trap problems. This research 
introduces an adaptive swarm-based optimization approach to the CS algorithm, using the sigmoid 
decreasing inertia weight (DIW), which produces the modified Cuckoo Search using decreasing 
inertia weight (MCS-DIW) algorithm to tackle local trap problems. The paper shows that the 
proposed MCS-DIW depicts a better-controlled mechanism by adding the DIW with Lévy flight, 
for balanced exploration and exploitation in the global search domain. Moreover, this study presents 

an inclusive, experimental analysis of the 
widely used set of standardized benchmark test 
problems released by the Institute of Electrical 
and Electronics Engineers (IEEE) Congress on 
Evolutionary Computation (CEC) benchmark 
along with selected mathematical test functions 
to assess the performance of the MCS algorithm. 
The MCS-DIW algorithm is compared with 
other swarm intelligence (SI) algorithms to 
validate, including the original CS algorithm, 
Whale Optimization Algorithm (WOA), Sine 
Cosine Algorithm (SCA), and Search Sparrow 
Algorithm (SSA). The compiled simulation 
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findings showed that the modified proposed CS algorithm, in most cases, performed better in attaining 
a low mean global minimum value, high convergence rate, and low central processing unit (CPU) 
processing time compared to other counterparts. The dynamic adjustment of inertia weight enhances 
optimization performance with an initial high inertia weight (e.g., 0.9) and promotes exploration, 
gradually decreasing to 0.2 for better exploitation. This proposed MCS-DIW approach provides 
faster convergence and has been proven to mitigate premature convergence. It reduces the number of 
iterations by 30-40% and achieves lower fitness values (e.g., 10-2) than static inertia weight, which 
often stabilizes at higher values (e.g., 10-1). In sum, the proposed MCS-DIW algorithm is proven 
to mitigate the local trap problems via an improved capability in searching for the global optimum.  

Keywords: Cuckoo Search Algorithm, exploration, exploitation, inertia weight, local trap problem, premature 
convergence, swarm intelligence

INTRODUCTION

Optimization plays an essential role in engineering to solve critical problems, such as 
communication routing, system design, image reconstruction, network operations, and 
energy loss (A. Chakraborty & Kar, 2017; Saka et al., 2013). These problems depend 
upon the minimization or maximization of the given objective functions. Subsequently, 
proper assessment for algorithmic validation is required, including accuracy, convergence 
rate, and computational time of the designed system (Sekyere et al., 2024; Zangana et al., 
2024). It also ensures efficient problem-solving mechanisms in complex systems under 
diverse constraints, including energy consumption (Adeyelu et al., 2024), communication 
limitations, image reconstruction errors (Habeb et al., 2024), and environmental factors 
related to the diverse changes in the search space. Accordingly, it emphasizes reliability, 
adaptability, and precision of algorithmic performance (Abualigah et al., 2024).

Moreover, metaheuristic algorithms provide guiding mechanisms to the new trending 
EA toward solving diverse optimization problems related to engineering (Luo et al., 
2024). Generally, the term “metaheuristic” is composed of two Greek words covering 
two verbs, which are “to find” and “beyond, in an upper level”. Moreover, metaheuristics 
can be defined based on two significant tactics: intensification and diversification (Abdul 
Rani et al., 2017; Adeyeye & Akanbi, 2024; Brezočnik et al., 2018; Saka et al., 2013). 
Additionally, intensification intends to choose the best optimal solution while searching 
for the best existing solution. However, diversification intends to explore the given search 
region efficiently, often by randomization (Brezočnik et al., 2018). Subsequently, modern 
evolutionary metaheuristic optimization algorithms such as SSA,  Genetic Algorithm (GA) 
(Sohail, 2023), WOA (Mahmood et al., 2023), SCA, Ant Lion Optimization (ALO), and 
Particle Swarm Optimization (PSO) are aimed at carrying out a global search for three 
main reasons: solving diverse and large problems, getting faster convergence, and providing 
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robustness (Abdul Rani & Malek, 2011; Kwakye et al., 2024; Massat, 2018; Xue et al., 
2023). Moreover, algorithmic efficiency can be considered the key attribute of metaheuristic 
algorithms. Accordingly, they started imitating the optimal features of nature, and mainly, 
they opted for the natural selection method using the fittest selection criteria, which can 
be seen in biology-based systems that have evolved over millions of years through natural 
selection (Adeyeye & Akanbi, 2024; Kwakye et al., 2024) .

Nowadays, some innovative researchers have introduced many nature-inspired 
optimization algorithms, for example, the Differential Evolution (DE) algorithm developed 
by Strom and Prince, functioned on crossover, selection and mutation operations using 
evolving populations. PSO inspired by fish and birds' schooling behavior  (S. Chakraborty 
et al., 2023; Shi & Eberhart, 1998). However, Simulated Annealing (SA) uses a metal 
annealing mechanism (Chen et al., 2024). Comparatively, the Bat-inspired algorithm 
has an echolocation capability to sense the distance between its surroundings. Besides, 
Ant and Bee's algorithms worked through their foraging behavior  using pheromone and 
concentration as a chemical messenger to control the given problem efficiently (Umar et 
al., 2024).

Though the CS algorithm is a nature-inspired, swarm intelligence-based evolutionary 
algorithm (EA) introduced by Yang and Deb in 2009 (Huang & Zhou, 2024). Basically, 
the CS algorithm used a cuckoo bird’s brood reproductive approach to increase their 
population. In addition, the CS algorithm is more prevalent and computationally efficient 
in discovering optimum solutions than its counterparts because it has fewer parameters 
than other nature-inspired algorithms. Moreover, the CS algorithm provides a potential 
solution using random groups of cuckoos inspired by the cuckoo’s brood parasitism that 
obligates the behavior  of laying eggs in a habitat to the host nest. In this regard, recent 
research on CS algorithms provides different evolutionary mechanisms for better local and 
globally optimal solutions using nature-inspired optimization techniques, which provide 
solutions regarding different complex optimization-related engineering problems. However, 
its simplicity and balancing mechanism in exploration and exploitation provide ease in 
regenerating a better solution for various optimization problems (Abdul Rani & Malek, 
2011; Aziz, 2022; Mohammed et al., 2023; Yang et al., 2024).

According to the above discussion, this paper aimed to propose an optimized variant 
of the Modified Cuckoo Search (MCS) algorithm using the sigmoid DIW, yielding MCS-
DIW to solve premature convergence and local trap problems. This proposed MCS-DIW 
algorithm ensures better exploration to efficiently find the global optimal solution. This 
research investigated a detailed parametric study, which aimed to fine-tune different 
parameters of the proposed algorithm. Afterwards, the anticipated strategy is validated 
using several different mathematical benchmark functions. Moreover, the performance of 
the MCS-DIW algorithm has been verified using different SI algorithms, including original 
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CS, SCA, WOA, and SSA. Hence, it has been observed that the MCS-DIW algorithm 
outperformed for most of the testing functions compared to its counterparts.

The organization of this research paper is as follows: Section 2 deliberates research 
materials and methods along with previous advancements using the different improved/
modified variants of the CS algorithm and the increasing and decreasing inertia weight by 
shedding light on their innovative contributions to providing efficient algorithms. Moreover, 
it briefly discusses the proposed methodology using the proposed research design, including 
the implementation strategy and its working principles. Subsequently, Section 3 exhibits 
experimental techniques used for the simulation setup. Furthermore, Section 4 presents 
results and discussions, which provide the interpretation regarding the performance of 
a series of empirical experimental results using different benchmark functions. Finally, 
Section 5 concludes the overall findings of this paper. 

MATERIALS AND METHODS

The proposed research involves modifying the CS algorithm to improve its performance for 
complex optimization tasks. The modified CS variant's effectiveness is thoroughly tested 
using a set of standard mathematical benchmark test functions, which includes unimodal and 
multimodal problems. Significant performance metrics such as computational efficiency, 
accuracy, and convergence rate are evaluated to validate the improvements associated with 
exploration and exploitation capabilities. Furthermore, the materials include benchmark 
mathematical functions like Ackley, Rosenbrock, Rastrigin, and Sphere, to test and evaluate 
the optimization performance. MATLAB-2020a is used to implement and simulate the 
modified CS algorithm. 

However, this paper provides Wilcoxon and Friedman statistical analyses of a proposed 
modified variant of the CS algorithm using the sigmoid DIW. The major objective of 
conducting this research is to modify and improve the CS algorithm to enhance the 
performance and competency of the conventional CS algorithm for better exploration to 
find the global best fitness value in the given problem region. In this regard, a parametric 
study was conducted to fine-tune the internal parameters of the original CS algorithm. 
Afterwards, the effectiveness of the proposed MCS-DIW algorithm is evaluated through 
empirical simulations using seven different well-known mathematical benchmark functions 
compared with a few chosen SI algorithms, including original CS, SCA, WOA, and SSA.

Research Design

A step-by-step flowchart of the proposed research design is depicted in Figure 1. The 
flowchart outlines the steps of the MCS-DIW algorithm, incorporating the proposed 
modification along the overall research optimization process. The process begins with 
a feasibility study to initialize parameters, define iterations, and determine test function 
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dimensions. Subsequently, the CS algorithm parameters are fine-tuned to identify the 
optimal configuration and the maximum number of iterations for enhanced performance. 
Here is a detailed breakdown of each step: 

Feasibility study of CS algorithm : A preliminary investigation is conducted to 
evaluate the feasibility and potential performance 
of the basic CS algorithm for the task at hand. 

Fine-tune and evaluate the 
original CS algorithm's internal 
parameters through parametric 
studies

:  The original CS algorithm is fine-tuned and 
assessed using various population numbers and 
fraction probability values. These parametric 
studies will determine the best internal parameters 
to use for the MCS algorithm in the later stage.

Formulate a MCS algorithm and 
generate a random population or 
host nest using increasing inertia 
weight (IIW) and DIW

:  The CS algorithm is modified in two versions 
by introducing both IIW and DIW in generating 
a random host nest (population) to improve 
the optimizer’s performance in exploring and 
exploiting potential global optimal solutions.

Validate the solution of the 
proposed MCS-IIW and MCS-
DIW algorithms

:  The process checks the validity of the global 
optimal solution of both MCS-IIW and MCS-DIW 
algorithms iteratively. If the solution is invalid, the 
process returns to the previous step, fine-tuning 
and re-evaluating both MCS-IIW and MCS-DIW 
algorithms. If the solution is valid, the process 
will proceed until the existing number of iterations 
reaches the maximum number of iterations. After 
achieving the maximum number of iterations, the 
method identifies the best fitness value of both 
MCS-IIW and MCS-DIW, corresponding to the 
global optimum solution (best nest). Simulate 
and compare both MCS-DIW and MCS-IIW 
algorithms with the original CS algorithm. Finally, 
the proposed MCS-DIW is compared with other 
chosen SI algorithms, which include the SCA, 
WOA, and SSA. 

Hence, this flowchart represents a typical process for optimizing solutions using an 
enhanced version of the CS algorithm with inertia weight, iterating through different 
potential solutions until the optimal one is found and validating the process along the 
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way (Figure 1). The final step compares the performance of this algorithm against other 
optimization-related algorithms.

Figure 1. Research flowchart
Note. CS = Cuckoo Search; MCS = Modified Cuckoo Search; MCS-IIW = Modified Cuckoo Search using 
increasing inertia weight; MCS-DIW = Modified Cuckoo Search using decreasing inertia weight; SI = Swarm 
intelligence; WOA = Whale Optimization Algorithm; SSA = Search Sparrow Algorithm; SCA = Sine Cosine 
Algorithm 
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Modified Variant of CS Using Inertia Weight

The advanced nature-inspired optimization method known as the CS algorithm is motivated 
by the brood parasitism nature of cuckoo birds, who laid their eggs in the nests of other birds 
(Joshi et al., 2017; Meena et al., 2024). The CS algorithm, introduced by Yang and Deb in 
2009, uses a local search mechanism to fine-tune solutions along with a combination of Lévy 
flight for global exploration (Almufti et al., 2025; Mareli & Twala, 2018). The algorithm 
begins by using a population of possible solutions for each representing a nest. Lévy flight, 
a kind of random walk that permits both tiny and large steps, strike a compromise between 
exploration and exploitation to produce new candidate solutions (Tian et al., 2024). A new 
one is substituted if an opted strategy doesn't increase the population's overall fitness. 
The population is updated iteratively by this method. This breeding behavior  along Lévy 
flight is being applied to improve the efficiency of CS and solve the various optimization 
problems (Ahmad et al., 2025; Cuong-Le et al., 2021).

Inertia Weight

The idea of an inertia weight was initiated to maintain a balance between the exploration 
and exploitation mechanisms and eliminate the need for maximum iterations, Imax. It is an 
innovative enhancement of the CS optimization algorithm that integrates the concept of 
inertia weight commonly utilized in metaheuristic algorithms. The addition of inertia weight 
introduces an adaptive parameter that modulates the magnitude of step changes during the 
search, enhancing the exploration and exploitation abilities of the algorithm. Alongside, 
by incorporating inertia weight, the algorithm dynamically balances the trade-off between 
local exploitation and global exploration, allowing for smoother convergence and improved 
convergence accuracy (Choudhary et al., 2023). This novel extension holds significant 
promise for enhancing the performance of Cuckoo Search in various optimization tasks 
across diverse domains. The inertia weight (w) ensured a controlled transition of the cuckoos 
by adding the weight to the contribution of the previous solution (Zdiri et al., 2021). Eq. 
[1] uses the Lévy flight to offer the new optimal solution using the inertia weight, which 
is mathematically shown in the following equation. Updated CS algorithm, Lévy flight 
equations using inertia weight.

𝑋𝑋𝑖𝑖
(𝑡𝑡+1) = 𝑤𝑤 ∗ 𝑥𝑥𝑖𝑖𝑡𝑡 + 𝛼𝛼 ⋅ 𝐿𝐿𝐿𝐿ˊ𝑣𝑣𝑣𝑣(𝜆𝜆)                [1] 

          𝐿𝐿𝐿𝐿ˊ𝑣𝑣𝑣𝑣(𝜆𝜆)  ∼ 𝑢𝑢
∣𝑣𝑣∣1/𝜆𝜆   

                   [2] 

 [1]𝑋𝑋𝑖𝑖
(𝑡𝑡+1) = 𝑤𝑤 ∗ 𝑥𝑥𝑖𝑖𝑡𝑡 + 𝛼𝛼 ⋅ 𝐿𝐿𝐿𝐿ˊ𝑣𝑣𝑣𝑣(𝜆𝜆)                [1] 

          𝐿𝐿𝐿𝐿ˊ𝑣𝑣𝑣𝑣(𝜆𝜆)  ∼ 𝑢𝑢
∣𝑣𝑣∣1/𝜆𝜆   

                   [2]  [2]

In Eq. [2], u and v are drawn from normal distributions. The following equations 
represent the weight update mechanism, typically used in optimization algorithms like 
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MCS or similar swarm intelligence method. The weight 𝑊𝑊𝑘𝑘     shown in Eq. [3] dynamically 
changes over iterations to ensure stability to explore and exploit during the search process.

Moreover, Eq. (3) (Y. Zheng et al., 2003) is utilized by DIW and IIW in Eq. [4] (Y. 
Zheng et al., 2003). Subsequently, the value of u is defined in Eq. [5] (Y. Zheng et al., 
2003). Accordingly, as shown in Table 1, which provides all the parameters used in the 
inertia weight equations.

 

𝑊𝑊𝑘𝑘   =  𝑊𝑊𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 − 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒
�1+𝐿𝐿−𝑢𝑢∗(𝑘𝑘−𝑒𝑒∗𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆 )�  

+  𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒                                      [3] 

 

                𝑊𝑊𝑘𝑘   =  𝑊𝑊𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 − 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒
�1+𝐿𝐿𝑢𝑢∗(𝑘𝑘−𝑒𝑒∗𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆 )�  

+  𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒                                      [4] 

                          

                   𝑢𝑢 =  10(log(𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆 )−2   

 [3]

 

𝑊𝑊𝑘𝑘   =  𝑊𝑊𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 − 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒
�1+𝐿𝐿−𝑢𝑢∗(𝑘𝑘−𝑒𝑒∗𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆 )�  

+  𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒                                      [3] 

 

                𝑊𝑊𝑘𝑘   =  𝑊𝑊𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 − 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒
�1+𝐿𝐿𝑢𝑢∗(𝑘𝑘−𝑒𝑒∗𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆 )�  

+  𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒                                      [4] 

                          

                   𝑢𝑢 =  10(log(𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆 )−2   

 [4]

 

𝑊𝑊𝑘𝑘   =  𝑊𝑊𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 − 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒
�1+𝐿𝐿−𝑢𝑢∗(𝑘𝑘−𝑒𝑒∗𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆 )�  

+  𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒                                      [3] 

 

                𝑊𝑊𝑘𝑘   =  𝑊𝑊𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 − 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒
�1+𝐿𝐿𝑢𝑢∗(𝑘𝑘−𝑒𝑒∗𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆 )�  

+  𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒                                      [4] 

                          

                   𝑢𝑢 =  10(log(𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆 )−2    [5]

Wk  is calculated as a combination of the initial weight Wstart and the final weight Wend, 
modulated by a sigmoid function. Further the term 

 

𝑊𝑊𝑘𝑘   =  𝑊𝑊𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 − 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒
�1+𝐿𝐿−𝑢𝑢∗(𝑘𝑘−𝑒𝑒∗𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆 )�  

+  𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒                                      [3] 

 

                𝑊𝑊𝑘𝑘   =  𝑊𝑊𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 − 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒
�1+𝐿𝐿𝑢𝑢∗(𝑘𝑘−𝑒𝑒∗𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆 )�  

+  𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒                                      [4] 

                          

                   𝑢𝑢 =  10(log(𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆 )−2   

 defines the rate of decay, 
where k is the existing iteration and niter  is the total number of iterations. This ensures that 
Wk    transitions smoothly from Wstart  to Wend as iterations progress.

Moreover, in Eq. [5], the parameter 

 

𝑊𝑊𝑘𝑘   =  𝑊𝑊𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 − 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒
�1+𝐿𝐿−𝑢𝑢∗(𝑘𝑘−𝑒𝑒∗𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆 )�  

+  𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒                                      [3] 

 

                𝑊𝑊𝑘𝑘   =  𝑊𝑊𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 − 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒
�1+𝐿𝐿𝑢𝑢∗(𝑘𝑘−𝑒𝑒∗𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆 )�  

+  𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒                                      [4] 

                          

                   𝑢𝑢 =  10(log(𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆 )−2    adapts the decay rate based on 
the current iteration. It fine-tunes how quickly the weight shifts from exploration (higher 
weights) to exploitation (lower weights) as the algorithm progresses.

Table 1  
Parameters details for the inertia weight equations

Symbol Name

𝑋𝑋𝑖𝑖
(𝑡𝑡+1) A new solution for the ith cuckoo at iteration t + 1

𝑥𝑥𝑖𝑖𝑡𝑡  Current solution 

𝛼𝛼 Scaling factor step size
𝐿𝐿𝐿𝐿ˊ𝑣𝑣𝑣𝑣(𝜆𝜆) Represents the Lévy flight distribution

W Inertia weight
Wstart Starting inertia weight at the given run
Wend Ending inertia weight at the given run
U Constant to adjust the shape of the function
N Constant to set the duration of the function

Later, this weight scheduling mechanism allows the algorithm to focus on early-
stage global exploration by assigning higher weights and gradually shifting towards local 
exploitation in later stages, improving convergence to the optimum solution. This adaptive 
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weight adjustment improves the CS algorithm's balance between finding diverse solutions 
and refining the best solutions over iterations.

MCS Algorithm – Pseudocode

The pseudocode of the proposed MCS 
algorithm is provided below. Previously, 
the inertia weights were implemented using 
constant (Sekyere et al., 2024) and dynamic 
(Nickabadi et al., 2011) values for all 
possible solutions and dimensions used for 
the complete search domain. In Eq. [1], the 
fitness function f(X) is evaluated for each 
solution X to determine its quality using 
inertia weight. The goal is to maximize 
or minimize this fitness, depending on the 
optimization problem. Conversely, dynamic 
values used two different increasing and 
decreasing approaches. For increasing, a 
small value of inertia weight will increase 
linearly or nonlinearly to a linearly 
increasing large value. For decreasing, a 
large value of inertia weight will decrease 
linearly or nonlinearly to a linearly small 
value. A large value of inertia weight will 
foster the possibility of global search 
convergence, and a small value of inertia 
weight has more potential for local search 
than a large value of inertia weight. As 
provided, the following MCS algorithm, 
where the modification is performed at step 
no. 07 using Eq. [1, 2] to add inertia weight 
to get the fastest convergence compared to 
the original CS algorithm.

Figure 2. Modified Cuckoo Search Algorithm  
flow chart
Note. n = Population; t = Iteration; xi = Host nest;  
xj = Random nest; F = Fitness value; Pa = Discovery 
probability 

The nature-inspired modified cuckoo search MCS-DIW metaheuristic algorithm begins 
by initializing the population nests, which are randomly distributed candidate solutions 
among the given search space. The next step shows exploration and exploitation using a 
random walk mechanism, generating new solutions using Lévy flights by adding inertia 
weight (Figure 2). 
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Furthermore, the bio inspired optimization strategy of cuckoo species is based on the 
brood parasitic behavior , which employs random walk using Lévy flight and discovery 
mechanism to find global optimal solution efficiently. 

In addition to enhancing the modified variant of the CS algorithm, the inertia weight 
is applied to the random walk solution to improve the performance of MCS-DIW. Using 
the inertia weight, the fitness value of each new solution is assessed repeatedly each time 
the new and better solution is replaced with the existing one if the performance of the 
new solution is better than the existing solution. This scenario mimics the strategy of 
the host bird cuckoo search involving detecting and eliminating foreign eggs. This step 
is repeated continuously according to the given condition until the stopping criterion is 
met, including achieving convergence and reaching the maximum number of iterations. 
In this regard, the first step of modified cuckoo search algorithm includes the definition 
of objective function and parameter initialization, such as maximum iterations t, host nest 
n, discovery probability Pa, and the parameters given in the Table 1. In the next step, the 
control enters the main loop to evaluate the fitness value of each host nest (solution) using 
the given objective function. Accordingly, inertia weight given in Eq. [1, 2] will be updated 
dynamically to ensure smooth transition to find the global optima over the given iterations. 
Further, the control enters a nested For loop to generate a new solution using Lévy flight 
with controlled step size using inertia weight. Subsequently, the latest fitness value will be 
evaluated to see if it is better than the existing solution. Under the upper and lower bound 
conditional check, the better optimal fitness value will be replaced with the existing one 
to enhance diversity. In other words, the new random solutions will be replaced with the 
fraction of nests (solutions) as the discovery probability Pa is determined. This process of 
global best selection will be executed until it reaches the maximum number of iterations. 
Lastly, found the optimal solution. Hence, it has proven that combining MCS-DIW with 
better selection, randomization with inertia weight, and nest replacement provides an 
efficient solution to the given problems, ensuring rapid optimal convergence and balanced 
exploitation and exploration. 

Modified Cuckoo Search Algorithm

1. Start
2. Objective function 𝑓𝑓(𝑥𝑥), 𝑥𝑥 = (𝑥𝑥1,𝑥𝑥2, 𝑥𝑥𝑒𝑒)𝑇𝑇 

3. Generate, initial population of n host nests,
4. 𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1,2,3, …𝑒𝑒 

5. while t < max iteration or stopping criterion
6. Get a cuckoo randomly by Lévy flight
7. Evaluate its quality/fitness 𝑭𝑭𝒊𝒊  using DIW for each nest Eq. [1, 2]
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8. Select a nest randomly from n (say, j)
9. if 𝐹𝐹𝑖𝑖 ≤ 𝐹𝐹𝑗𝑗  
10. Replace j with a new solution

           end if
11. A fraction, 𝑃𝑃𝑆𝑆   of worst nests are abandoned, and new ones are reconstructed
12. Keep the best solutions (or nests with quality solutions)
13. Rank the solutions and find the current best
14. end while
15. Postprocess results and visualization
16. End  

Data Analysis and Interpretation Techniques

To validate the efficiency of the proposed MCS algorithm, real-time performance will be 
analyzed, and tests will be carried out to identify the improvements. Thus, unimodal and 
multimodal-based objective functions were used to test the working of the MCS algorithm. 
Table 2 demonstrates eight out of 23 classical sets of test functions used for the MCS 
algorithm performance analysis (Cheraghi et al., 2023).

Table 2 
Selected eight test functions (Mareli & Twala, 2018)

Problems Name Range
F1 Rosenbrock’s function [-2.048, -2.048]
F2 Ackley's function [-32.768,32.768]
F3 Griewanks's function [-600,600]
F4 Rastrigin's function [-5.12,5.12]
F5 Nocontinuous Rastrigin's function [-5.12,5.12]
F6 Schewfel’s function [-500,-500]
F7 Weierstrass’s function [-0.5,-0.5]
F8 E_Scaffer’s F6 function [-100,100]

The selected test functions encompass a range of optimization landscapes, each posing 
unique challenges to optimization algorithms. Additionally, the evaluation extends to 
include the Rotated Elliptic, Rotated Bent Cigar, and Rotated Discus functions (Ghiaskar 
et al., 2024; Thaher et al., 2024; W. Zheng et al., 2023). The formulas, domains, and ranges 
of these functions are meticulously defined to provide a consistent basis for comparison.

Further, these benchmark functions facilitate a comprehensive assessment, allowing 
for thoroughly validating the proposed methods' performance across various optimization 
landscapes. By subjecting the proposed methods to these standardized tests, the research 
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aims to establish their effectiveness, efficiency, and adaptability in solving real-world 
optimization problems (Bharambe et al., 2024; Liu et al., 2022; Wei & Niu, 2022). This 
validation and verification process highlights the robustness and practical applicability of 
the proposed method, providing a credible foundation for its integration into optimization 
tasks.

Experimental Techniques

Experimental Setup

An experimental setup was deployed to validate the effectiveness of the proposed MCS 
algorithm. Eight different categories of mathematical benchmark functions were used to 
test the efficiency of the proposed algorithm. Accordingly, MATLAB R2020a was used 
for coding on a Core (TM) 1.61 GHz system for simulation experiments.

Parametric Study

The parametric study is performed using optimization test functions. In this regard, the 
original cuckoo search algorithm was tested using different values, including population 
and probability. 

Simulation Findings

The findings of all the initial results are presented in this section. In this regard, 23 
optimization mathematical test functions are used to fine-tune the internal parameters of 
the original CS algorithm, where the F1 to F3 test functions were unimodal. In contrast, the 
F4 to F16 test functions were multimodal. Accordingly, Figure 3 depicts the comparison of 
different mathematical test functions, including F1 to F23, using 500 iterations, where the 
original CS algorithm exhibited the fast convergence curve in four out of 23 test functions, 
namely, the F6, F12, F13, and F22 test functions. In most evaluations, the convergence 
exhibited higher performance in F6, F12, F13, and F22 compared with the adjusted 
benchmark functions and the original CS algorithm. Moreover, to fine-tune the internal 
parameters, the population is set to 30 and the fraction probability is set to 0.5, running for 
3000 iterations. The resultant functions show faster convergence with more exploration 
of the given problem. A comparison was performed with other Swarm Intelligence (SI) 
algorithms to ensure a fair evaluation of the metaheuristics.

Furthermore, the analysis of the abovementioned comparison shows that the CS 
algorithm performed better in four out of 23 functions, including F6, F12, F13, and 
F22, respectively. As shown in Figure 4 (a), the selected test functions demonstrated 
the algorithm's performance using logarithmic fitness values to minimize the objective 
function using 3000 iterations. These resultant functions are compared further to get the 
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best optimal solution to fine-tune the internal parameters. Additionally, the results show 
that F6 is being explored more deeply in the search area than F12, F13, and F22. Hence, 
the F6 function indicates a black line depicting the fastest convergence among all other 
test functions, achieving the lowest fitness value within the fewest iterations. 

Subsequently, as depicted in Figures 4 (b) and (c), the CEC benchmark functions were 
evaluated using the proposed MCS algorithm, along with the original CS algorithm, over 
500 iterations. Where the performance of MCS is better as compared to the original CS 
algorithm, this ensures the fastest convergence to find the global optimal solution. 

Figure 5 shows the convergence curves with different population values assigned 
10, 20, 30, 40, and 50, with a fraction probability value of 0.5 using the F6 test function 
because F6 outperformed in the above shown Figures 3 and 4 out of 23 mathematical test 
functions. The fitness value is plotted against the different number of iterations out of 3000 
iterations. The results show that as the size of the population decreases, the convergence 
rate becomes higher. In contrast, an appropriate selection of population size is to balance 
the solution quality and computational efficiency. Additionally, the given scenario illustrates 
that the population size of 10 depicts a higher computational cost for the best optimization 
problem compared to other population values.

Moreover, the probability parameter is also critical in controlling the balance between 
exploration and exploitation in the algorithm using the F6 test function. For this scenario, 
a range of probability values (0.1, 0.25, 0.5, 0.75, and 1) has been compared to estimate 
the better performance of the CS algorithm optimization c=0.5 (red line) achieves the best 

Figure 3. Convergence curve of the original Cuckoo Search (CS) Algorithm using the 23 different mathematical 
test functions for F1 to F23
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overall performance, combining fast convergence with a low final fitness value. Lower 
probabilities, while slower, may still be useful for problems requiring more extensive 
exploration. Thus, the fraction probability of 0.5 had the lowest global optimal solutions 
compared to different values (Figure 6).

RESULTS AND DISCUSSION

First, a comparison between increasing and decreasing sigmoid inertia weight has been 
performed using Eqs. (3) and (4), as shown in Figure 7, using the specifications listed in 

(a) (b)

(c)

Figure 4. Convergence curve of the original Cuckoo Search (CS) Algorithm using the best test functions along 
Congress on Evolutionary Computation (CEC) benchmark functions
Note. MCS = Modified Cuckoo Search
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Table 3 for the performance comparison 
of both increasing and decreasing inertia 
weight. The MCS algorithm using the DIW 
performed better than the MCS algorithm 
using the IIW to attain faster convergence 
after 1300 iterations (Figure 7).

The MCS-DIW outperforms both MCS-
IIW and CS in terms of achieving the lowest 
fitness value and fastest CPU time due to its 
dynamic adjustment of the inertia weight. 
Subsequently, the Big O computational 
complexity of the proposed MCS-DIW 

Figure 5. Comparison of parametric results with different values of population in the Cuckoo Search Algorithm

Figure 6. Comparison of parametric results with different values of fraction probability in Cuckoo Search 
Algorithm

Table 3 
Parameters of the proposed Modified Cuckoo 
Search Algorithm

Serial no. Name Values
1. Population 10 
2. Probability  0.5
3. W-Start 400 
4. W-End  200
5. Iterations 2000
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algorithm using the additional computation of decreasing inertia weight remains the same 
as compared to the original CS algorithm, which is O(n × Maxiter), where n represents 
the number of nests, and MaxIter is the maximum number of iterations. The proposed 
MCS-DIW algorithm also improves the convergence stability, global search efficiency, 
and solution accuracy. Thus, the modified algorithm is computationally richer and more 
robust compared to the original CS algorithm. Ensuring improved convergence and better 
global search behavior  with manageable computational load. 

Furthermore, as shown in Figure 7, the MCS-DIW (blue line) consistently reaches 
lower fitness values faster and stabilizes below 10-2 approaching 10-3, whereas MCS-IIW 
(magenta line) plateaus earlier at a higher fitness value, and CS (red line) converges more 
slowly and stagnates around 10-1. The key advantage of MCS-DIW lies in its adaptive 
inertia weight mechanism, where the inertia weight decreases over time starting high (e.g., 
around 0.9) to promote exploration in the early stages, allowing the algorithm to traverse 
large areas of the search space and avoid local minima. As iterations progress, the inertia 
weight decreases (e.g., down to 0.2), which helps the algorithm focus on exploitation, 
refining solutions in promising regions for more precise optimization. This dynamic control 
prevents premature convergence and ensures that MCS-DIW maintains a balance between 
exploration and exploitation, resulting in faster convergence to lower fitness values with 
fewer iterations, which in turn reduces CPU time. In contrast, MCS-IIW has a more static 
inertia weight adjustment, and CS lacks adaptive mechanisms, leading to slower and less 
efficient performance.

The results depicted in Figure 7 demonstrate the superior performance of the MCS-
DIW algorithm (blue line) compared to MCS-IIW (magenta line) and CS (red line). The 

Figure 7. Comparison between original Cuckoo Search (CS) with proposed Modified Cuckoo Search (MCS) 
Algorithm
Note. MCS-IIW = Modified Cuckoo Search using increasing inertia weight; MCS-DIW = Modified Cuckoo 
Search using decreasing inertia weight
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MCS-DIW reaches a significantly lower fitness value of approximately 10-3 within 2800 to 
7100 iterations, whereas MCS-IIW stabilizes at a fitness value near 10-1, and CS plateaus 
around one after approximately 1000 iterations out of a total of 10000 iterations. In terms 
of efficiency, MCS-DIW requires fewer iterations and thus achieves faster CPU time as it 
converges more quickly toward an optimal solution. In contrast, MCS-IIW and CS take 
longer to converge and stabilize at suboptimal fitness values, highlighting the advantage 
of MCS-DIW's dynamic inertia weight in both accuracy and computational efficiency.

Furthermore, the proposed MCS-DIW and original CS, SSA, SCA, and WOA have 
been compared using four selected optimization test functions, as shown in Figures 8-11. 
Performance indicators are provided in Tables 4 and 5 for comparison purposes.

Moreover, Figures 8-11 show the results of 4 different mathematical benchmark 
test functions, including (a) F4, (b) F5, (c) F7, and (d) F9, using different SI algorithms, 
including MCS-DIW, CSA, WOA, and SSA, to emphasize the significance of balancing 
between exploration and exploitation to attain accuracy and robustness in optimization 
related problems. These different swarm intelligence algorithms showed various 
convergence rates for objective function minimization using the logarithmic scale fitness 
values against 2000 iterations for each of the four selected functions. 

Subsequently, in Figure 8, using the F4 function, the proposed MCS-DIW algorithm has 
significantly outperformed as compared to other selected SI algorithms and demonstrated 
by the magenta line, achieving the fastest convergence by the lowest fitness value ~10-20 
against 2000 iterations and continued to improve the exploration process capabilities along 

Figure 8. Comparison of the Modified Cuckoo Search using Decreasing Inertia Weight (MCS-DIW) algorithm 
with Cuckoo Search Algorithm (CSA), Sine Cosine Algorithm (SCA), Search Sparrow Algorithm (SSA), and 
Whale Optimization Algorithm (WOA) using the test function F4
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deep exploitation to find the global optimal value over time. Afterwards, the SCA showed 
a green line illustrating a slower convergence rate using the moderate fitness value, ~10-5, 
with early stagnation of the overall search space. Next, the WOA represents a black line 
and stagnates quickly with ~10-2 fitness values over 800 iterations, which depicts a local 
trap problem and premature convergence. The blue line represents SSA, reflecting an 
imbalance between exploitation and exploration with slower convergence than MCS and 
SCA. Hence, SSA reaches ~10-3 fitness values over 1200 iterations. Besides, the original 
CS algorithm represents a red line along its fine-tuned parameters and showed better 
performance than WOA and SSA around 1500 iterations, achieving the fitness value of ~10-

4. However, the red line demonstrates the original CS algorithm depicted, which showed a 
slower convergence rate as compared to the proposed MCS-DIW algorithm. Additionally, 
it has shown intermediate performance and is less efficient than the MCS-DIW and SCA 
algorithms, along with limited exploration capability to find the global optimal value.

In Figure 9, using the F5 function to minimize the objective function, the proposed 
MCS-DIW algorithm has maintained a good balance between exploration and exploitation 
to find the global optimal solution as compared to other selected SI algorithms. It has been 
demonstrated by the magenta line, achieving the fastest convergence by the final lowest 
fitness value ~10-20 by approximately 200 iterations, and it has continued to improve the 
exploration process capabilities along deep exploitation to find the global optimal value over 
time by reaching ~10-5 against 1000 iterations and drops to ~10-15 fitness value. Accordingly, 
it efficiently achieves the global optimal value compared to the other selected SI algorithms.

Besides, the blue line represents SSA, reflecting a gradual imbalance between 
exploitation and exploration with slower convergence than MCS and CS. Hence, SSA 
reaches ~10-2 fitness values without further improvements with 500 iterations, leading to 
suboptimal solutions. Afterwards, the SCA showed a green line exhibiting an initial rapid 
convergence rate but got trapped in local search space early. As a result, it only reached 
the moderate fitness value, ~10-3 with 200 iterations, with early stagnation of the overall 
search space, and afterwards there were no significant improvements. 

Subsequently, the red line demonstrates that the original CS algorithm depicts a 
slower convergence rate using the moderate fitness value, ~10-12, with early stagnation of 
the overall search space over 1500 iterations. Over 500 iterations, the fitness values have 
been improving from ~10-4 to ~10-8 at 1000 iterations. However, the original CS algorithm 
is a bit slower as compared to the modified variant in reaching the global optimal level. 

Next, the WOA represents a black line and stagnates quickly with ~10-1 fitness value 
over 200 iterations, which depicts a local trap problem and premature convergence. Hence, 
the proposed MCS-DIW provides satisfactory results to find the global optimal solution as 
compared to early stagnation and limited optimization potential of SCA, SSA, and WOA 
comparative variants.
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Figure 9. Comparison of the Modified Cuckoo Search using decreasing inertia weight (MCS-DIW) alg1orithm 
with Cuckoo Search Algorithm (CSA), Sine Cosine Algorithm (SCA), Search Sparrow Algorithm (SSA), and 
Whale Optimization Algorithm (WOA) using the test function F5

In Figure 10, using the F7 function to minimize the objective function, the proposed 
MCS-DIW algorithm has maintained a good balance between exploration and exploitation 
to find the global optimal solution as compared to other selected SI algorithms. It has 
been demonstrated by the magenta line, achieving the fastest convergence by the lowest 
fitness value ~10-14 by approximately 600 iterations and drops to ~10-4 fitness value by 200 
iterations. Accordingly, it efficiently achieves the global optimal value compared to the 
other selected SI algorithms by keeping a balance between exploration and exploitation.

Besides, the blue line represents SSA, again reflecting an imbalance between 
exploitation and exploration with higher fitness values and slower convergence. Hence, SSA 
reaches ~10-3 fitness values without further improvements with 1000 iterations, leading to 
early suboptimal solutions. Afterwards, the SCA showed a green line exhibiting an initial 
rapid convergence rate but got trapped in the local search space early. As a result, it has 
comparatively demonstrated effective but less robust and slower performance, providing 
a fitness value of ~10-12 with 1200 iterations.

Subsequently, the red line demonstrates that original CS algorithm depicts a slower 
convergence rate using the moderate fitness value, ~10-10, with moderate performance over 
1800 iterations. Still, according to the results, it is less efficient than MCS-DIW and SCA. 
Next, the WOA represents a black line and stagnates quickly with ~10-2 fitness values 
throughout the iterations, which depicts a local trap problem and premature convergence. 
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Hence, the proposed MCS-DIW provides satisfactory results with the lowest fitness value 
to find the global optimal solution as compared to other selected SI algorithms.

Figure 10. Comparison of the Modified Cuckoo Search using decreasing inertia weight (MCS-DIW) algorithm 
with Cuckoo Search Algorithm (CSA), Sine Cosine Algorithm (SCA), Search Sparrow Algorithm (SSA), and 
Whale Optimization Algorithm (WOA) using the test function F7

In Figure 11, using the F9 function to minimize the objective function, the proposed 
MCS-DIW algorithm has maintained a good balance between exploration and exploitation 
to find the global optimal solution compared to other selected SI algorithms. It has been 
demonstrated by the magenta line, achieving the fastest convergence by the lowest 
fitness value ~10-4 by approximately 1200 iterations and exhibiting steady improvement. 
Accordingly, it efficiently achieves the global optimal value compared to the other selected 
SI algorithms by balancing exploration and exploitation.

Besides, the blue line represents SSA, exhibiting slower convergence and limited 
exploration capabilities. Hence, SSA reaches ~10-2 fitness values without further 
improvements with 1200 iterations, leading to early suboptimal solutions. Afterwards, 
the SCA showed a green line exhibiting an initial rapid convergence rate of around 1000 
iterations but got trapped in local search space early. As a result, it has demonstrated an 
effective but less robust and slower performance, providing a fitness value of ~10-2.

Subsequently, the red line demonstrates the original CS algorithm depicts a slower 
convergence rate using the moderate fitness value, ~10-3, with moderate performance over 
1500 iterations, but according to the results, it is showing better performance as compared 
to SCA, SSA, and WOA. Next, the WOA represents a black line; it is less effective as it 
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stagnates quickly with ~10-1 fitness value with 600 iterations without further improvements, 
which depicts a local trap problem and premature convergence. 

Hence, the proposed MCS-DIW provides satisfactory results with the lowest fitness 
value to find the global optimal solution as compared to other selected SI algorithms.

Figure 11. Comparison of the Modified Cuckoo Search using decreasing inertia weight (MCS-DIW) algorithm 
with Cuckoo Search Algorithm (CSA), Sine Cosine Algorithm (SCA), Search Sparrow Algorithm (SSA), and 
Whale Optimization Algorithm (WOA) using the test function F9

Additionally, the mean and standard deviation (Std) comparison results are provided 
in Table 4, where all the comparative SI algorithms’ results are compared using 2000 
iterations and the 4 selected mathematical test functions. This comparison showed that the 
proposed MCS-DIW provides better mean values compared to other selected algorithms. 

Furthermore, Table 5 depicts the best cost values and CPU processing time comparison, 
and comparatively, the proposed algorithm showed efficiency with less time compared to 
the selected SI algorithms. 

To validate the proposed MCS-DIW's effectiveness, Figure 12 depicts the statistical 
analysis results for the Wilcoxon and Friedman statistical tests, where the final fitness values 
of the different optimization SI algorithms along proposed MCS-DIW have been evaluated. 
The proposed MCS-DIW showed a better convergence with significantly lower fitness values 
than the other comparative swarm intelligence algorithms.

Table 6 indicates that the Wilcoxon results provide p-values < 0.05, indicating that the 
proposed MCS-DIW significantly outperforms its counterparts. 
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Table 4  
Mean and standard deviation global minimum comparison

Test 
functions

MCS-DIW
mean/std.

CS
mean/std.

SCA
mean/std.

WOA
mean/std.

SSA
mean/std.

Iterations

F4 150.5354/
37.02811

211.1881/
56.34211

519.586/
33.1708

190.4882/
12.4564

635.3371/
38.45453

2000

F5 23802.9639/
28.5646

58123.004/
40.5653

1207313.7257/
39.87865

69099.5753/
39.65743

173143.7317/
17.45434

2000

F7 0.058221/
0.03221

0.12902/
0.10902

1.1749/
1.1130

0.11596/
0.12484

0.19193/
0.12184

2000

F9 0.035221/
0.05822

0.22602/
0.12902

1.1479/
1.1749

0.12596/
0.11596

0.18292/
0.19193

2000

Note. CS = Cuckoo Search; MCS-DIW = Modified Cuckoo Search using decreasing inertia weight; 
WOA = Whale Optimization Algorithm; SCA = Sine Cosine Algorithm; SSA = Search Sparrow Algorithm;  
std. = Standard deviation  

Table 5 
Best cost and CPU processing time comparison

Problems MCS-DIW
best cost/ 
CPU time

consumption

CS
best cost/ 
CPU time

consumption

SCA
best cost/ CPU 

time
consumption

WOA
best cost/ 
CPU time

consumption

SSA
best cost/ 
CPU time

consumption

Iterations

F4 1.9557e-114/
0.57213

2.8581e-17/
1.4351

0/
0.14198

1.1235e19/
1.7858

0.45196/
0.35833

2000

F5 1.0788e-88/
0.5828

1.4398e-09/
1.7483

0/
0.16401

1.9121e08/
1.6112

0.00053215/
0.38028

2000

F7 0.005398912.1/
4

0.0093989/
10.0351

0.01339591.267/
3

6.1368/
4.9487

1.8422/
2.761

2000

F9 0.0068648/
1.3327

0.010044/
1.2569

0/
0.12485

0.0097856/
0.43367

0.082626/
0.33124

2000

Note. CS = Cuckoo Search; MCS-DIW = Modified Cuckoo Search using decreasing inertia weight; WOA 
= Whale Optimization Algorithm; SCA = Sine Cosine Algorithm; SSA = Search Sparrow Algorithm; CPU = 
Central processing unit  

Table 6 
Test Wilcoxon results for MCS-DIW

Comparative algorithms Wilcoxon Statistic p-value
MCS-DIW vs CS 0.0 0.0023
MCS-DIW vs SCA 0.0 0.0017
MCS-DIW vs WOA 1.0 0.0034
MCS-DIW vs SSA 0.0 0.0028

Note. MCS-DIW = Modified Cuckoo Search using decreasing inertia weight; CS = Cuckoo Search; SCA = Sine 
Cosine Algorithm; WOA = Whale Optimization Algorithm; SSA = Search Sparrow Algorithm
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Figure 12. Comparison of the Modified Cuckoo Search using decreasing inertia weight (MCS-DIW) Algorithm 
with original Cuckoo Search, Sine Cosine Algorithm (SCA), Search Sparrow Algorithm (SSA), and Whale 
Optimization Algorithm (WOA) using the 10 different optimization test functions
Note. CSA = Cuckoo Search Algorithm

The results shown in Table 7 indicate better performance of the proposed MCS-DIW as 
the p-value (p < 0.05) is extremely low compared to other comparative swarm intelligent 
algorithms, ensuring the effectiveness of the proposed algorithm. 

Table 7 
Friedman statistical result 

Statistical test Test value p-value
Friedman Test 38.32 9.63 × 10⁻⁸

CONCLUSION AND FUTURE WORKS

This research paper provides an improved variant of the MCS algorithm, proposed using the 
sigmoid DIW to avoid premature convergence. Extensive investigations are conducted to 
validate the performance of the MCS-DIW algorithm using optimization test functions. The 
performance of the MCS-DIW algorithm is compared with a few different SI algorithms, 
such as original CS, SCA, WOA, and SSA. The simulation experiments show that the 
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performance, stability, robustness, and convergence speed of the MCS-DIW algorithm 
surpasses other SI counterparts. In sum, the MCS-DIW algorithm can effectively overcome 
the local trap problem through its enhanced exploration capacity to find the best global 
optimum. The proposed research significantly improved the performance of MCS-IW by 
utilizing fewer tuning parameters and providing the fastest convergence compared to its 
counterparts. Additionally, MCS-IW's local optima escaping ability ensured strong global 
search capabilities. However, due to the heavy reliance on the randomized nature of nest and 
Lévy flight replacements, there exists a problem of inconsistency and population diversity; 
additional modifications are required to handle the inconsistencies and constrained 
optimization problems effectively.  In this regard, a more in-depth analysis of the proposed 
MCS-DIW algorithm will be executed in both single-objective (SO) and multi-objective 
(MO) real-world engineering problems, such as power system optimization, neural network 
training, image reconstruction, data clustering, data classification, and error minimization. 
Moreover, the MCS-IW algorithm will be integrated with other swarm intelligence 
algorithms to hybridize the capabilities to find the maximum global optima. However, the 
efficiency of the proposed algorithm can be improved by implementing quantum-inspired 
techniques, parallel computing, and constraint-handling advanced mechanisms to enhance 
the performance of large-scale optimization tasks for better balancing between exploration 
and exploitation.
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