
Journal homepage: http://www.pertanika.upm.edu.my/

SCIENCE & TECHNOLOGY

PREPRINT

e-ISSN: 2231-8526 © Universiti Putra Malaysia Press

Article history:
Received: 31 December 2024
Accepted: 29 April 2025
Published: 11 August 2025

ARTICLE INFO

E-mail addresses:
kalsoombajwa11@gmail.com (Kalsoom Safdar)
khairulnajmy@unimap.edu.my (Khairul Najmy Abdul Rani)
sitijulia@unimap.edu.my (Siti Julia Rosli)
mohdaminudin@unimap.edu.my (Mohd Aminudin Jamlos)
usman.younus@bgnu.edu.pk (Muhammad Usman Younus)
* Corresponding author

DOI: https://doi.org/10.47836/pjst.33.5.03

Modified Cuckoo Search Algorithm Using Sigmoid Decreasing
Inertia Weight for Global Optimization

Kalsoom Safdar1,2, Khairul Najmy Abdul Rani1,3, Siti Julia Rosli1,3,
Mohd Aminudin Jamlos1,3* and Muhammad Usman Younus4,5

1Faculty of Electronic Engineering and Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
2Department of Computer Science and Information Technology, University of Jhang, 35200, Jhang, Pakistan
3Advanced Communication Engineering, Centre of Excellence, Universiti Malaysia Perlis, 01000 Kangar, Perlis,
Malaysia
4Department of Computer Science and Information Technology, Baba Guru Nanak University, 39120 Nankana
Sahib, Pakistan
5Ecole Math´ematiques, Informatique, T´el´ecommunications de Toulouse, Universit´e de Toulouse, 31000 de
Toulouse, France

ABSTRACT
Cuckoo Search (CS) is an evolutionary computational (EC) algorithm inspired by the behavior
of a cuckoo bird, introduced by Yang and Deb in 2009 to solve various engineering-intensive
optimization problems. However, this metaheuristic algorithm, CS, still suffers from premature
convergence, mainly due to multimodal problems leading to local trap problems. This research
introduces an adaptive swarm-based optimization approach to the CS algorithm, using the sigmoid
decreasing inertia weight (DIW), which produces the modified Cuckoo Search using decreasing
inertia weight (MCS-DIW) algorithm to tackle local trap problems. The paper shows that the
proposed MCS-DIW depicts a better-controlled mechanism by adding the DIW with Lévy flight,
for balanced exploration and exploitation in the global search domain. Moreover, this study presents

an inclusive, experimental analysis of the
widely used set of standardized benchmark test
problems released by the Institute of Electrical
and Electronics Engineers (IEEE) Congress on
Evolutionary Computation (CEC) benchmark
along with selected mathematical test functions
to assess the performance of the MCS algorithm.
The MCS-DIW algorithm is compared with
other swarm intelligence (SI) algorithms to
validate, including the original CS algorithm,
Whale Optimization Algorithm (WOA), Sine
Cosine Algorithm (SCA), and Search Sparrow
Algorithm (SSA). The compiled simulation

PREPRINT

Kalsoom Safdar, Khairul Najmy Abdul Rani, Siti Julia Rosli, Mohd Aminudin Jamlos and Muhammad Usman Younus

findings showed that the modified proposed CS algorithm, in most cases, performed better in attaining
a low mean global minimum value, high convergence rate, and low central processing unit (CPU)
processing time compared to other counterparts. The dynamic adjustment of inertia weight enhances
optimization performance with an initial high inertia weight (e.g., 0.9) and promotes exploration,
gradually decreasing to 0.2 for better exploitation. This proposed MCS-DIW approach provides
faster convergence and has been proven to mitigate premature convergence. It reduces the number of
iterations by 30-40% and achieves lower fitness values (e.g., 10-2) than static inertia weight, which
often stabilizes at higher values (e.g., 10-1). In sum, the proposed MCS-DIW algorithm is proven
to mitigate the local trap problems via an improved capability in searching for the global optimum.

Keywords: Cuckoo Search Algorithm, exploration, exploitation, inertia weight, local trap problem, premature
convergence, swarm intelligence

INTRODUCTION

Optimization plays an essential role in engineering to solve critical problems, such as
communication routing, system design, image reconstruction, network operations, and
energy loss (A. Chakraborty & Kar, 2017; Saka et al., 2013). These problems depend
upon the minimization or maximization of the given objective functions. Subsequently,
proper assessment for algorithmic validation is required, including accuracy, convergence
rate, and computational time of the designed system (Sekyere et al., 2024; Zangana et al.,
2024). It also ensures efficient problem-solving mechanisms in complex systems under
diverse constraints, including energy consumption (Adeyelu et al., 2024), communication
limitations, image reconstruction errors (Habeb et al., 2024), and environmental factors
related to the diverse changes in the search space. Accordingly, it emphasizes reliability,
adaptability, and precision of algorithmic performance (Abualigah et al., 2024).

Moreover, metaheuristic algorithms provide guiding mechanisms to the new trending
EA toward solving diverse optimization problems related to engineering (Luo et al.,
2024). Generally, the term “metaheuristic” is composed of two Greek words covering
two verbs, which are “to find” and “beyond, in an upper level”. Moreover, metaheuristics
can be defined based on two significant tactics: intensification and diversification (Abdul
Rani et al., 2017; Adeyeye & Akanbi, 2024; Brezočnik et al., 2018; Saka et al., 2013).
Additionally, intensification intends to choose the best optimal solution while searching
for the best existing solution. However, diversification intends to explore the given search
region efficiently, often by randomization (Brezočnik et al., 2018). Subsequently, modern
evolutionary metaheuristic optimization algorithms such as SSA, Genetic Algorithm (GA)
(Sohail, 2023), WOA (Mahmood et al., 2023), SCA, Ant Lion Optimization (ALO), and
Particle Swarm Optimization (PSO) are aimed at carrying out a global search for three
main reasons: solving diverse and large problems, getting faster convergence, and providing

PREPRINT

Modified Cuckoo Search Algorithm for Global Optimization

robustness (Abdul Rani & Malek, 2011; Kwakye et al., 2024; Massat, 2018; Xue et al.,
2023). Moreover, algorithmic efficiency can be considered the key attribute of metaheuristic
algorithms. Accordingly, they started imitating the optimal features of nature, and mainly,
they opted for the natural selection method using the fittest selection criteria, which can
be seen in biology-based systems that have evolved over millions of years through natural
selection (Adeyeye & Akanbi, 2024; Kwakye et al., 2024) .

Nowadays, some innovative researchers have introduced many nature-inspired
optimization algorithms, for example, the Differential Evolution (DE) algorithm developed
by Strom and Prince, functioned on crossover, selection and mutation operations using
evolving populations. PSO inspired by fish and birds' schooling behavior (S. Chakraborty
et al., 2023; Shi & Eberhart, 1998). However, Simulated Annealing (SA) uses a metal
annealing mechanism (Chen et al., 2024). Comparatively, the Bat-inspired algorithm
has an echolocation capability to sense the distance between its surroundings. Besides,
Ant and Bee's algorithms worked through their foraging behavior using pheromone and
concentration as a chemical messenger to control the given problem efficiently (Umar et
al., 2024).

Though the CS algorithm is a nature-inspired, swarm intelligence-based evolutionary
algorithm (EA) introduced by Yang and Deb in 2009 (Huang & Zhou, 2024). Basically,
the CS algorithm used a cuckoo bird’s brood reproductive approach to increase their
population. In addition, the CS algorithm is more prevalent and computationally efficient
in discovering optimum solutions than its counterparts because it has fewer parameters
than other nature-inspired algorithms. Moreover, the CS algorithm provides a potential
solution using random groups of cuckoos inspired by the cuckoo’s brood parasitism that
obligates the behavior of laying eggs in a habitat to the host nest. In this regard, recent
research on CS algorithms provides different evolutionary mechanisms for better local and
globally optimal solutions using nature-inspired optimization techniques, which provide
solutions regarding different complex optimization-related engineering problems. However,
its simplicity and balancing mechanism in exploration and exploitation provide ease in
regenerating a better solution for various optimization problems (Abdul Rani & Malek,
2011; Aziz, 2022; Mohammed et al., 2023; Yang et al., 2024).

According to the above discussion, this paper aimed to propose an optimized variant
of the Modified Cuckoo Search (MCS) algorithm using the sigmoid DIW, yielding MCS-
DIW to solve premature convergence and local trap problems. This proposed MCS-DIW
algorithm ensures better exploration to efficiently find the global optimal solution. This
research investigated a detailed parametric study, which aimed to fine-tune different
parameters of the proposed algorithm. Afterwards, the anticipated strategy is validated
using several different mathematical benchmark functions. Moreover, the performance of
the MCS-DIW algorithm has been verified using different SI algorithms, including original

PREPRINT

Kalsoom Safdar, Khairul Najmy Abdul Rani, Siti Julia Rosli, Mohd Aminudin Jamlos and Muhammad Usman Younus

CS, SCA, WOA, and SSA. Hence, it has been observed that the MCS-DIW algorithm
outperformed for most of the testing functions compared to its counterparts.

The organization of this research paper is as follows: Section 2 deliberates research
materials and methods along with previous advancements using the different improved/
modified variants of the CS algorithm and the increasing and decreasing inertia weight by
shedding light on their innovative contributions to providing efficient algorithms. Moreover,
it briefly discusses the proposed methodology using the proposed research design, including
the implementation strategy and its working principles. Subsequently, Section 3 exhibits
experimental techniques used for the simulation setup. Furthermore, Section 4 presents
results and discussions, which provide the interpretation regarding the performance of
a series of empirical experimental results using different benchmark functions. Finally,
Section 5 concludes the overall findings of this paper.

MATERIALS AND METHODS

The proposed research involves modifying the CS algorithm to improve its performance for
complex optimization tasks. The modified CS variant's effectiveness is thoroughly tested
using a set of standard mathematical benchmark test functions, which includes unimodal and
multimodal problems. Significant performance metrics such as computational efficiency,
accuracy, and convergence rate are evaluated to validate the improvements associated with
exploration and exploitation capabilities. Furthermore, the materials include benchmark
mathematical functions like Ackley, Rosenbrock, Rastrigin, and Sphere, to test and evaluate
the optimization performance. MATLAB-2020a is used to implement and simulate the
modified CS algorithm.

However, this paper provides Wilcoxon and Friedman statistical analyses of a proposed
modified variant of the CS algorithm using the sigmoid DIW. The major objective of
conducting this research is to modify and improve the CS algorithm to enhance the
performance and competency of the conventional CS algorithm for better exploration to
find the global best fitness value in the given problem region. In this regard, a parametric
study was conducted to fine-tune the internal parameters of the original CS algorithm.
Afterwards, the effectiveness of the proposed MCS-DIW algorithm is evaluated through
empirical simulations using seven different well-known mathematical benchmark functions
compared with a few chosen SI algorithms, including original CS, SCA, WOA, and SSA.

Research Design

A step-by-step flowchart of the proposed research design is depicted in Figure 1. The
flowchart outlines the steps of the MCS-DIW algorithm, incorporating the proposed
modification along the overall research optimization process. The process begins with
a feasibility study to initialize parameters, define iterations, and determine test function

PREPRINT

Modified Cuckoo Search Algorithm for Global Optimization

dimensions. Subsequently, the CS algorithm parameters are fine-tuned to identify the
optimal configuration and the maximum number of iterations for enhanced performance.
Here is a detailed breakdown of each step:

Feasibility study of CS algorithm : A preliminary investigation is conducted to
evaluate the feasibility and potential performance
of the basic CS algorithm for the task at hand.

Fine-tune and evaluate the
original CS algorithm's internal
parameters through parametric
studies

: The original CS algorithm is fine-tuned and
assessed using various population numbers and
fraction probability values. These parametric
studies will determine the best internal parameters
to use for the MCS algorithm in the later stage.

Formulate a MCS algorithm and
generate a random population or
host nest using increasing inertia
weight (IIW) and DIW

: The CS algorithm is modified in two versions
by introducing both IIW and DIW in generating
a random host nest (population) to improve
the optimizer’s performance in exploring and
exploiting potential global optimal solutions.

Validate the solution of the
proposed MCS-IIW and MCS-
DIW algorithms

: The process checks the validity of the global
optimal solution of both MCS-IIW and MCS-DIW
algorithms iteratively. If the solution is invalid, the
process returns to the previous step, fine-tuning
and re-evaluating both MCS-IIW and MCS-DIW
algorithms. If the solution is valid, the process
will proceed until the existing number of iterations
reaches the maximum number of iterations. After
achieving the maximum number of iterations, the
method identifies the best fitness value of both
MCS-IIW and MCS-DIW, corresponding to the
global optimum solution (best nest). Simulate
and compare both MCS-DIW and MCS-IIW
algorithms with the original CS algorithm. Finally,
the proposed MCS-DIW is compared with other
chosen SI algorithms, which include the SCA,
WOA, and SSA.

Hence, this flowchart represents a typical process for optimizing solutions using an
enhanced version of the CS algorithm with inertia weight, iterating through different
potential solutions until the optimal one is found and validating the process along the

PREPRINT

Kalsoom Safdar, Khairul Najmy Abdul Rani, Siti Julia Rosli, Mohd Aminudin Jamlos and Muhammad Usman Younus

way (Figure 1). The final step compares the performance of this algorithm against other
optimization-related algorithms.

Figure 1. Research flowchart
Note. CS = Cuckoo Search; MCS = Modified Cuckoo Search; MCS-IIW = Modified Cuckoo Search using
increasing inertia weight; MCS-DIW = Modified Cuckoo Search using decreasing inertia weight; SI = Swarm
intelligence; WOA = Whale Optimization Algorithm; SSA = Search Sparrow Algorithm; SCA = Sine Cosine
Algorithm

PREPRINT

Modified Cuckoo Search Algorithm for Global Optimization

Modified Variant of CS Using Inertia Weight

The advanced nature-inspired optimization method known as the CS algorithm is motivated
by the brood parasitism nature of cuckoo birds, who laid their eggs in the nests of other birds
(Joshi et al., 2017; Meena et al., 2024). The CS algorithm, introduced by Yang and Deb in
2009, uses a local search mechanism to fine-tune solutions along with a combination of Lévy
flight for global exploration (Almufti et al., 2025; Mareli & Twala, 2018). The algorithm
begins by using a population of possible solutions for each representing a nest. Lévy flight,
a kind of random walk that permits both tiny and large steps, strike a compromise between
exploration and exploitation to produce new candidate solutions (Tian et al., 2024). A new
one is substituted if an opted strategy doesn't increase the population's overall fitness.
The population is updated iteratively by this method. This breeding behavior along Lévy
flight is being applied to improve the efficiency of CS and solve the various optimization
problems (Ahmad et al., 2025; Cuong-Le et al., 2021).

Inertia Weight

The idea of an inertia weight was initiated to maintain a balance between the exploration
and exploitation mechanisms and eliminate the need for maximum iterations, Imax. It is an
innovative enhancement of the CS optimization algorithm that integrates the concept of
inertia weight commonly utilized in metaheuristic algorithms. The addition of inertia weight
introduces an adaptive parameter that modulates the magnitude of step changes during the
search, enhancing the exploration and exploitation abilities of the algorithm. Alongside,
by incorporating inertia weight, the algorithm dynamically balances the trade-off between
local exploitation and global exploration, allowing for smoother convergence and improved
convergence accuracy (Choudhary et al., 2023). This novel extension holds significant
promise for enhancing the performance of Cuckoo Search in various optimization tasks
across diverse domains. The inertia weight (w) ensured a controlled transition of the cuckoos
by adding the weight to the contribution of the previous solution (Zdiri et al., 2021). Eq.
[1] uses the Lévy flight to offer the new optimal solution using the inertia weight, which
is mathematically shown in the following equation. Updated CS algorithm, Lévy flight
equations using inertia weight.

𝑋𝑋𝑖𝑖
(𝑡𝑡+1) = 𝑤𝑤 ∗ 𝑥𝑥𝑖𝑖𝑡𝑡 + 𝛼𝛼 ⋅ 𝐿𝐿𝐿𝐿ˊ𝑣𝑣𝑣𝑣(𝜆𝜆) [1]

 𝐿𝐿𝐿𝐿ˊ𝑣𝑣𝑣𝑣(𝜆𝜆) ∼ 𝑢𝑢
∣𝑣𝑣∣1/𝜆𝜆

 [2]

 [1]𝑋𝑋𝑖𝑖
(𝑡𝑡+1) = 𝑤𝑤 ∗ 𝑥𝑥𝑖𝑖𝑡𝑡 + 𝛼𝛼 ⋅ 𝐿𝐿𝐿𝐿ˊ𝑣𝑣𝑣𝑣(𝜆𝜆) [1]

 𝐿𝐿𝐿𝐿ˊ𝑣𝑣𝑣𝑣(𝜆𝜆) ∼ 𝑢𝑢
∣𝑣𝑣∣1/𝜆𝜆

 [2] [2]

In Eq. [2], u and v are drawn from normal distributions. The following equations
represent the weight update mechanism, typically used in optimization algorithms like

PREPRINT

Kalsoom Safdar, Khairul Najmy Abdul Rani, Siti Julia Rosli, Mohd Aminudin Jamlos and Muhammad Usman Younus

MCS or similar swarm intelligence method. The weight 𝑊𝑊𝑘𝑘 shown in Eq. [3] dynamically
changes over iterations to ensure stability to explore and exploit during the search process.

Moreover, Eq. (3) (Y. Zheng et al., 2003) is utilized by DIW and IIW in Eq. [4] (Y.
Zheng et al., 2003). Subsequently, the value of u is defined in Eq. [5] (Y. Zheng et al.,
2003). Accordingly, as shown in Table 1, which provides all the parameters used in the
inertia weight equations.

𝑊𝑊𝑘𝑘 = 𝑊𝑊𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 − 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒
�1+𝐿𝐿−𝑢𝑢∗(𝑘𝑘−𝑒𝑒∗𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆)�

+ 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒 [3]

 𝑊𝑊𝑘𝑘 = 𝑊𝑊𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 − 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒
�1+𝐿𝐿𝑢𝑢∗(𝑘𝑘−𝑒𝑒∗𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆)�

+ 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒 [4]

 𝑢𝑢 = 10(log(𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆)−2

 [3]

𝑊𝑊𝑘𝑘 = 𝑊𝑊𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 − 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒
�1+𝐿𝐿−𝑢𝑢∗(𝑘𝑘−𝑒𝑒∗𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆)�

+ 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒 [3]

 𝑊𝑊𝑘𝑘 = 𝑊𝑊𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 − 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒
�1+𝐿𝐿𝑢𝑢∗(𝑘𝑘−𝑒𝑒∗𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆)�

+ 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒 [4]

 𝑢𝑢 = 10(log(𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆)−2

 [4]

𝑊𝑊𝑘𝑘 = 𝑊𝑊𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 − 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒
�1+𝐿𝐿−𝑢𝑢∗(𝑘𝑘−𝑒𝑒∗𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆)�

+ 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒 [3]

 𝑊𝑊𝑘𝑘 = 𝑊𝑊𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 − 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒
�1+𝐿𝐿𝑢𝑢∗(𝑘𝑘−𝑒𝑒∗𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆)�

+ 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒 [4]

 𝑢𝑢 = 10(log(𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆)−2 [5]

Wk is calculated as a combination of the initial weight Wstart and the final weight Wend,
modulated by a sigmoid function. Further the term

𝑊𝑊𝑘𝑘 = 𝑊𝑊𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 − 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒
�1+𝐿𝐿−𝑢𝑢∗(𝑘𝑘−𝑒𝑒∗𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆)�

+ 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒 [3]

 𝑊𝑊𝑘𝑘 = 𝑊𝑊𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 − 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒
�1+𝐿𝐿𝑢𝑢∗(𝑘𝑘−𝑒𝑒∗𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆)�

+ 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒 [4]

 𝑢𝑢 = 10(log(𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆)−2

 defines the rate of decay,
where k is the existing iteration and niter is the total number of iterations. This ensures that
Wk transitions smoothly from Wstart to Wend as iterations progress.

Moreover, in Eq. [5], the parameter

𝑊𝑊𝑘𝑘 = 𝑊𝑊𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 − 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒
�1+𝐿𝐿−𝑢𝑢∗(𝑘𝑘−𝑒𝑒∗𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆)�

+ 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒 [3]

 𝑊𝑊𝑘𝑘 = 𝑊𝑊𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 − 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒
�1+𝐿𝐿𝑢𝑢∗(𝑘𝑘−𝑒𝑒∗𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆)�

+ 𝑊𝑊𝐿𝐿𝑒𝑒𝑒𝑒 [4]

 𝑢𝑢 = 10(log(𝑖𝑖𝑡𝑡𝐿𝐿𝑆𝑆)−2 adapts the decay rate based on
the current iteration. It fine-tunes how quickly the weight shifts from exploration (higher
weights) to exploitation (lower weights) as the algorithm progresses.

Table 1
Parameters details for the inertia weight equations

Symbol Name

𝑋𝑋𝑖𝑖
(𝑡𝑡+1) A new solution for the ith cuckoo at iteration t + 1

𝑥𝑥𝑖𝑖𝑡𝑡 Current solution

𝛼𝛼 Scaling factor step size
𝐿𝐿𝐿𝐿ˊ𝑣𝑣𝑣𝑣(𝜆𝜆) Represents the Lévy flight distribution

W Inertia weight
Wstart Starting inertia weight at the given run
Wend Ending inertia weight at the given run
U Constant to adjust the shape of the function
N Constant to set the duration of the function

Later, this weight scheduling mechanism allows the algorithm to focus on early-
stage global exploration by assigning higher weights and gradually shifting towards local
exploitation in later stages, improving convergence to the optimum solution. This adaptive

PREPRINT

Modified Cuckoo Search Algorithm for Global Optimization

weight adjustment improves the CS algorithm's balance between finding diverse solutions
and refining the best solutions over iterations.

MCS Algorithm – Pseudocode

The pseudocode of the proposed MCS
algorithm is provided below. Previously,
the inertia weights were implemented using
constant (Sekyere et al., 2024) and dynamic
(Nickabadi et al., 2011) values for all
possible solutions and dimensions used for
the complete search domain. In Eq. [1], the
fitness function f(X) is evaluated for each
solution X to determine its quality using
inertia weight. The goal is to maximize
or minimize this fitness, depending on the
optimization problem. Conversely, dynamic
values used two different increasing and
decreasing approaches. For increasing, a
small value of inertia weight will increase
linearly or nonlinearly to a linearly
increasing large value. For decreasing, a
large value of inertia weight will decrease
linearly or nonlinearly to a linearly small
value. A large value of inertia weight will
foster the possibility of global search
convergence, and a small value of inertia
weight has more potential for local search
than a large value of inertia weight. As
provided, the following MCS algorithm,
where the modification is performed at step
no. 07 using Eq. [1, 2] to add inertia weight
to get the fastest convergence compared to
the original CS algorithm.

Figure 2. Modified Cuckoo Search Algorithm
flow chart
Note. n = Population; t = Iteration; xi = Host nest;
xj = Random nest; F = Fitness value; Pa = Discovery
probability

The nature-inspired modified cuckoo search MCS-DIW metaheuristic algorithm begins
by initializing the population nests, which are randomly distributed candidate solutions
among the given search space. The next step shows exploration and exploitation using a
random walk mechanism, generating new solutions using Lévy flights by adding inertia
weight (Figure 2).

PREPRINT

Kalsoom Safdar, Khairul Najmy Abdul Rani, Siti Julia Rosli, Mohd Aminudin Jamlos and Muhammad Usman Younus

Furthermore, the bio inspired optimization strategy of cuckoo species is based on the
brood parasitic behavior , which employs random walk using Lévy flight and discovery
mechanism to find global optimal solution efficiently.

In addition to enhancing the modified variant of the CS algorithm, the inertia weight
is applied to the random walk solution to improve the performance of MCS-DIW. Using
the inertia weight, the fitness value of each new solution is assessed repeatedly each time
the new and better solution is replaced with the existing one if the performance of the
new solution is better than the existing solution. This scenario mimics the strategy of
the host bird cuckoo search involving detecting and eliminating foreign eggs. This step
is repeated continuously according to the given condition until the stopping criterion is
met, including achieving convergence and reaching the maximum number of iterations.
In this regard, the first step of modified cuckoo search algorithm includes the definition
of objective function and parameter initialization, such as maximum iterations t, host nest
n, discovery probability Pa, and the parameters given in the Table 1. In the next step, the
control enters the main loop to evaluate the fitness value of each host nest (solution) using
the given objective function. Accordingly, inertia weight given in Eq. [1, 2] will be updated
dynamically to ensure smooth transition to find the global optima over the given iterations.
Further, the control enters a nested For loop to generate a new solution using Lévy flight
with controlled step size using inertia weight. Subsequently, the latest fitness value will be
evaluated to see if it is better than the existing solution. Under the upper and lower bound
conditional check, the better optimal fitness value will be replaced with the existing one
to enhance diversity. In other words, the new random solutions will be replaced with the
fraction of nests (solutions) as the discovery probability Pa is determined. This process of
global best selection will be executed until it reaches the maximum number of iterations.
Lastly, found the optimal solution. Hence, it has proven that combining MCS-DIW with
better selection, randomization with inertia weight, and nest replacement provides an
efficient solution to the given problems, ensuring rapid optimal convergence and balanced
exploitation and exploration.

Modified Cuckoo Search Algorithm

1. Start
2. Objective function 𝑓𝑓(𝑥𝑥), 𝑥𝑥 = (𝑥𝑥1,𝑥𝑥2, 𝑥𝑥𝑒𝑒)𝑇𝑇

3. Generate, initial population of n host nests,
4. 𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1,2,3, …𝑒𝑒

5. while t < max iteration or stopping criterion
6. Get a cuckoo randomly by Lévy flight
7. Evaluate its quality/fitness 𝑭𝑭𝒊𝒊 using DIW for each nest Eq. [1, 2]

PREPRINT

Modified Cuckoo Search Algorithm for Global Optimization

8. Select a nest randomly from n (say, j)
9. if 𝐹𝐹𝑖𝑖 ≤ 𝐹𝐹𝑗𝑗
10. Replace j with a new solution

 end if
11. A fraction, 𝑃𝑃𝑆𝑆 of worst nests are abandoned, and new ones are reconstructed
12. Keep the best solutions (or nests with quality solutions)
13. Rank the solutions and find the current best
14. end while
15. Postprocess results and visualization
16. End

Data Analysis and Interpretation Techniques

To validate the efficiency of the proposed MCS algorithm, real-time performance will be
analyzed, and tests will be carried out to identify the improvements. Thus, unimodal and
multimodal-based objective functions were used to test the working of the MCS algorithm.
Table 2 demonstrates eight out of 23 classical sets of test functions used for the MCS
algorithm performance analysis (Cheraghi et al., 2023).

Table 2
Selected eight test functions (Mareli & Twala, 2018)

Problems Name Range
F1 Rosenbrock’s function [-2.048, -2.048]
F2 Ackley's function [-32.768,32.768]
F3 Griewanks's function [-600,600]
F4 Rastrigin's function [-5.12,5.12]
F5 Nocontinuous Rastrigin's function [-5.12,5.12]
F6 Schewfel’s function [-500,-500]
F7 Weierstrass’s function [-0.5,-0.5]
F8 E_Scaffer’s F6 function [-100,100]

The selected test functions encompass a range of optimization landscapes, each posing
unique challenges to optimization algorithms. Additionally, the evaluation extends to
include the Rotated Elliptic, Rotated Bent Cigar, and Rotated Discus functions (Ghiaskar
et al., 2024; Thaher et al., 2024; W. Zheng et al., 2023). The formulas, domains, and ranges
of these functions are meticulously defined to provide a consistent basis for comparison.

Further, these benchmark functions facilitate a comprehensive assessment, allowing
for thoroughly validating the proposed methods' performance across various optimization
landscapes. By subjecting the proposed methods to these standardized tests, the research

PREPRINT

Kalsoom Safdar, Khairul Najmy Abdul Rani, Siti Julia Rosli, Mohd Aminudin Jamlos and Muhammad Usman Younus

aims to establish their effectiveness, efficiency, and adaptability in solving real-world
optimization problems (Bharambe et al., 2024; Liu et al., 2022; Wei & Niu, 2022). This
validation and verification process highlights the robustness and practical applicability of
the proposed method, providing a credible foundation for its integration into optimization
tasks.

Experimental Techniques

Experimental Setup

An experimental setup was deployed to validate the effectiveness of the proposed MCS
algorithm. Eight different categories of mathematical benchmark functions were used to
test the efficiency of the proposed algorithm. Accordingly, MATLAB R2020a was used
for coding on a Core (TM) 1.61 GHz system for simulation experiments.

Parametric Study

The parametric study is performed using optimization test functions. In this regard, the
original cuckoo search algorithm was tested using different values, including population
and probability.

Simulation Findings

The findings of all the initial results are presented in this section. In this regard, 23
optimization mathematical test functions are used to fine-tune the internal parameters of
the original CS algorithm, where the F1 to F3 test functions were unimodal. In contrast, the
F4 to F16 test functions were multimodal. Accordingly, Figure 3 depicts the comparison of
different mathematical test functions, including F1 to F23, using 500 iterations, where the
original CS algorithm exhibited the fast convergence curve in four out of 23 test functions,
namely, the F6, F12, F13, and F22 test functions. In most evaluations, the convergence
exhibited higher performance in F6, F12, F13, and F22 compared with the adjusted
benchmark functions and the original CS algorithm. Moreover, to fine-tune the internal
parameters, the population is set to 30 and the fraction probability is set to 0.5, running for
3000 iterations. The resultant functions show faster convergence with more exploration
of the given problem. A comparison was performed with other Swarm Intelligence (SI)
algorithms to ensure a fair evaluation of the metaheuristics.

Furthermore, the analysis of the abovementioned comparison shows that the CS
algorithm performed better in four out of 23 functions, including F6, F12, F13, and
F22, respectively. As shown in Figure 4 (a), the selected test functions demonstrated
the algorithm's performance using logarithmic fitness values to minimize the objective
function using 3000 iterations. These resultant functions are compared further to get the

PREPRINT

Modified Cuckoo Search Algorithm for Global Optimization

best optimal solution to fine-tune the internal parameters. Additionally, the results show
that F6 is being explored more deeply in the search area than F12, F13, and F22. Hence,
the F6 function indicates a black line depicting the fastest convergence among all other
test functions, achieving the lowest fitness value within the fewest iterations.

Subsequently, as depicted in Figures 4 (b) and (c), the CEC benchmark functions were
evaluated using the proposed MCS algorithm, along with the original CS algorithm, over
500 iterations. Where the performance of MCS is better as compared to the original CS
algorithm, this ensures the fastest convergence to find the global optimal solution.

Figure 5 shows the convergence curves with different population values assigned
10, 20, 30, 40, and 50, with a fraction probability value of 0.5 using the F6 test function
because F6 outperformed in the above shown Figures 3 and 4 out of 23 mathematical test
functions. The fitness value is plotted against the different number of iterations out of 3000
iterations. The results show that as the size of the population decreases, the convergence
rate becomes higher. In contrast, an appropriate selection of population size is to balance
the solution quality and computational efficiency. Additionally, the given scenario illustrates
that the population size of 10 depicts a higher computational cost for the best optimization
problem compared to other population values.

Moreover, the probability parameter is also critical in controlling the balance between
exploration and exploitation in the algorithm using the F6 test function. For this scenario,
a range of probability values (0.1, 0.25, 0.5, 0.75, and 1) has been compared to estimate
the better performance of the CS algorithm optimization c=0.5 (red line) achieves the best

Figure 3. Convergence curve of the original Cuckoo Search (CS) Algorithm using the 23 different mathematical
test functions for F1 to F23

PREPRINT

Kalsoom Safdar, Khairul Najmy Abdul Rani, Siti Julia Rosli, Mohd Aminudin Jamlos and Muhammad Usman Younus

overall performance, combining fast convergence with a low final fitness value. Lower
probabilities, while slower, may still be useful for problems requiring more extensive
exploration. Thus, the fraction probability of 0.5 had the lowest global optimal solutions
compared to different values (Figure 6).

RESULTS AND DISCUSSION

First, a comparison between increasing and decreasing sigmoid inertia weight has been
performed using Eqs. (3) and (4), as shown in Figure 7, using the specifications listed in

(a) (b)

(c)

Figure 4. Convergence curve of the original Cuckoo Search (CS) Algorithm using the best test functions along
Congress on Evolutionary Computation (CEC) benchmark functions
Note. MCS = Modified Cuckoo Search

PREPRINT

Modified Cuckoo Search Algorithm for Global Optimization

Table 3 for the performance comparison
of both increasing and decreasing inertia
weight. The MCS algorithm using the DIW
performed better than the MCS algorithm
using the IIW to attain faster convergence
after 1300 iterations (Figure 7).

The MCS-DIW outperforms both MCS-
IIW and CS in terms of achieving the lowest
fitness value and fastest CPU time due to its
dynamic adjustment of the inertia weight.
Subsequently, the Big O computational
complexity of the proposed MCS-DIW

Figure 5. Comparison of parametric results with different values of population in the Cuckoo Search Algorithm

Figure 6. Comparison of parametric results with different values of fraction probability in Cuckoo Search
Algorithm

Table 3
Parameters of the proposed Modified Cuckoo
Search Algorithm

Serial no. Name Values
1. Population 10
2. Probability 0.5
3. W-Start 400
4. W-End 200
5. Iterations 2000

PREPRINT

Kalsoom Safdar, Khairul Najmy Abdul Rani, Siti Julia Rosli, Mohd Aminudin Jamlos and Muhammad Usman Younus

algorithm using the additional computation of decreasing inertia weight remains the same
as compared to the original CS algorithm, which is O(n × Maxiter), where n represents
the number of nests, and MaxIter is the maximum number of iterations. The proposed
MCS-DIW algorithm also improves the convergence stability, global search efficiency,
and solution accuracy. Thus, the modified algorithm is computationally richer and more
robust compared to the original CS algorithm. Ensuring improved convergence and better
global search behavior with manageable computational load.

Furthermore, as shown in Figure 7, the MCS-DIW (blue line) consistently reaches
lower fitness values faster and stabilizes below 10-2 approaching 10-3, whereas MCS-IIW
(magenta line) plateaus earlier at a higher fitness value, and CS (red line) converges more
slowly and stagnates around 10-1. The key advantage of MCS-DIW lies in its adaptive
inertia weight mechanism, where the inertia weight decreases over time starting high (e.g.,
around 0.9) to promote exploration in the early stages, allowing the algorithm to traverse
large areas of the search space and avoid local minima. As iterations progress, the inertia
weight decreases (e.g., down to 0.2), which helps the algorithm focus on exploitation,
refining solutions in promising regions for more precise optimization. This dynamic control
prevents premature convergence and ensures that MCS-DIW maintains a balance between
exploration and exploitation, resulting in faster convergence to lower fitness values with
fewer iterations, which in turn reduces CPU time. In contrast, MCS-IIW has a more static
inertia weight adjustment, and CS lacks adaptive mechanisms, leading to slower and less
efficient performance.

The results depicted in Figure 7 demonstrate the superior performance of the MCS-
DIW algorithm (blue line) compared to MCS-IIW (magenta line) and CS (red line). The

Figure 7. Comparison between original Cuckoo Search (CS) with proposed Modified Cuckoo Search (MCS)
Algorithm
Note. MCS-IIW = Modified Cuckoo Search using increasing inertia weight; MCS-DIW = Modified Cuckoo
Search using decreasing inertia weight

PREPRINT

Modified Cuckoo Search Algorithm for Global Optimization

MCS-DIW reaches a significantly lower fitness value of approximately 10-3 within 2800 to
7100 iterations, whereas MCS-IIW stabilizes at a fitness value near 10-1, and CS plateaus
around one after approximately 1000 iterations out of a total of 10000 iterations. In terms
of efficiency, MCS-DIW requires fewer iterations and thus achieves faster CPU time as it
converges more quickly toward an optimal solution. In contrast, MCS-IIW and CS take
longer to converge and stabilize at suboptimal fitness values, highlighting the advantage
of MCS-DIW's dynamic inertia weight in both accuracy and computational efficiency.

Furthermore, the proposed MCS-DIW and original CS, SSA, SCA, and WOA have
been compared using four selected optimization test functions, as shown in Figures 8-11.
Performance indicators are provided in Tables 4 and 5 for comparison purposes.

Moreover, Figures 8-11 show the results of 4 different mathematical benchmark
test functions, including (a) F4, (b) F5, (c) F7, and (d) F9, using different SI algorithms,
including MCS-DIW, CSA, WOA, and SSA, to emphasize the significance of balancing
between exploration and exploitation to attain accuracy and robustness in optimization
related problems. These different swarm intelligence algorithms showed various
convergence rates for objective function minimization using the logarithmic scale fitness
values against 2000 iterations for each of the four selected functions.

Subsequently, in Figure 8, using the F4 function, the proposed MCS-DIW algorithm has
significantly outperformed as compared to other selected SI algorithms and demonstrated
by the magenta line, achieving the fastest convergence by the lowest fitness value ~10-20
against 2000 iterations and continued to improve the exploration process capabilities along

Figure 8. Comparison of the Modified Cuckoo Search using Decreasing Inertia Weight (MCS-DIW) algorithm
with Cuckoo Search Algorithm (CSA), Sine Cosine Algorithm (SCA), Search Sparrow Algorithm (SSA), and
Whale Optimization Algorithm (WOA) using the test function F4

PREPRINT

Kalsoom Safdar, Khairul Najmy Abdul Rani, Siti Julia Rosli, Mohd Aminudin Jamlos and Muhammad Usman Younus

deep exploitation to find the global optimal value over time. Afterwards, the SCA showed
a green line illustrating a slower convergence rate using the moderate fitness value, ~10-5,
with early stagnation of the overall search space. Next, the WOA represents a black line
and stagnates quickly with ~10-2 fitness values over 800 iterations, which depicts a local
trap problem and premature convergence. The blue line represents SSA, reflecting an
imbalance between exploitation and exploration with slower convergence than MCS and
SCA. Hence, SSA reaches ~10-3 fitness values over 1200 iterations. Besides, the original
CS algorithm represents a red line along its fine-tuned parameters and showed better
performance than WOA and SSA around 1500 iterations, achieving the fitness value of ~10-

4. However, the red line demonstrates the original CS algorithm depicted, which showed a
slower convergence rate as compared to the proposed MCS-DIW algorithm. Additionally,
it has shown intermediate performance and is less efficient than the MCS-DIW and SCA
algorithms, along with limited exploration capability to find the global optimal value.

In Figure 9, using the F5 function to minimize the objective function, the proposed
MCS-DIW algorithm has maintained a good balance between exploration and exploitation
to find the global optimal solution as compared to other selected SI algorithms. It has been
demonstrated by the magenta line, achieving the fastest convergence by the final lowest
fitness value ~10-20 by approximately 200 iterations, and it has continued to improve the
exploration process capabilities along deep exploitation to find the global optimal value over
time by reaching ~10-5 against 1000 iterations and drops to ~10-15 fitness value. Accordingly,
it efficiently achieves the global optimal value compared to the other selected SI algorithms.

Besides, the blue line represents SSA, reflecting a gradual imbalance between
exploitation and exploration with slower convergence than MCS and CS. Hence, SSA
reaches ~10-2 fitness values without further improvements with 500 iterations, leading to
suboptimal solutions. Afterwards, the SCA showed a green line exhibiting an initial rapid
convergence rate but got trapped in local search space early. As a result, it only reached
the moderate fitness value, ~10-3 with 200 iterations, with early stagnation of the overall
search space, and afterwards there were no significant improvements.

Subsequently, the red line demonstrates that the original CS algorithm depicts a
slower convergence rate using the moderate fitness value, ~10-12, with early stagnation of
the overall search space over 1500 iterations. Over 500 iterations, the fitness values have
been improving from ~10-4 to ~10-8 at 1000 iterations. However, the original CS algorithm
is a bit slower as compared to the modified variant in reaching the global optimal level.

Next, the WOA represents a black line and stagnates quickly with ~10-1 fitness value
over 200 iterations, which depicts a local trap problem and premature convergence. Hence,
the proposed MCS-DIW provides satisfactory results to find the global optimal solution as
compared to early stagnation and limited optimization potential of SCA, SSA, and WOA
comparative variants.

PREPRINT

Modified Cuckoo Search Algorithm for Global Optimization

Figure 9. Comparison of the Modified Cuckoo Search using decreasing inertia weight (MCS-DIW) alg1orithm
with Cuckoo Search Algorithm (CSA), Sine Cosine Algorithm (SCA), Search Sparrow Algorithm (SSA), and
Whale Optimization Algorithm (WOA) using the test function F5

In Figure 10, using the F7 function to minimize the objective function, the proposed
MCS-DIW algorithm has maintained a good balance between exploration and exploitation
to find the global optimal solution as compared to other selected SI algorithms. It has
been demonstrated by the magenta line, achieving the fastest convergence by the lowest
fitness value ~10-14 by approximately 600 iterations and drops to ~10-4 fitness value by 200
iterations. Accordingly, it efficiently achieves the global optimal value compared to the
other selected SI algorithms by keeping a balance between exploration and exploitation.

Besides, the blue line represents SSA, again reflecting an imbalance between
exploitation and exploration with higher fitness values and slower convergence. Hence, SSA
reaches ~10-3 fitness values without further improvements with 1000 iterations, leading to
early suboptimal solutions. Afterwards, the SCA showed a green line exhibiting an initial
rapid convergence rate but got trapped in the local search space early. As a result, it has
comparatively demonstrated effective but less robust and slower performance, providing
a fitness value of ~10-12 with 1200 iterations.

Subsequently, the red line demonstrates that original CS algorithm depicts a slower
convergence rate using the moderate fitness value, ~10-10, with moderate performance over
1800 iterations. Still, according to the results, it is less efficient than MCS-DIW and SCA.
Next, the WOA represents a black line and stagnates quickly with ~10-2 fitness values
throughout the iterations, which depicts a local trap problem and premature convergence.

PREPRINT

Kalsoom Safdar, Khairul Najmy Abdul Rani, Siti Julia Rosli, Mohd Aminudin Jamlos and Muhammad Usman Younus

Hence, the proposed MCS-DIW provides satisfactory results with the lowest fitness value
to find the global optimal solution as compared to other selected SI algorithms.

Figure 10. Comparison of the Modified Cuckoo Search using decreasing inertia weight (MCS-DIW) algorithm
with Cuckoo Search Algorithm (CSA), Sine Cosine Algorithm (SCA), Search Sparrow Algorithm (SSA), and
Whale Optimization Algorithm (WOA) using the test function F7

In Figure 11, using the F9 function to minimize the objective function, the proposed
MCS-DIW algorithm has maintained a good balance between exploration and exploitation
to find the global optimal solution compared to other selected SI algorithms. It has been
demonstrated by the magenta line, achieving the fastest convergence by the lowest
fitness value ~10-4 by approximately 1200 iterations and exhibiting steady improvement.
Accordingly, it efficiently achieves the global optimal value compared to the other selected
SI algorithms by balancing exploration and exploitation.

Besides, the blue line represents SSA, exhibiting slower convergence and limited
exploration capabilities. Hence, SSA reaches ~10-2 fitness values without further
improvements with 1200 iterations, leading to early suboptimal solutions. Afterwards,
the SCA showed a green line exhibiting an initial rapid convergence rate of around 1000
iterations but got trapped in local search space early. As a result, it has demonstrated an
effective but less robust and slower performance, providing a fitness value of ~10-2.

Subsequently, the red line demonstrates the original CS algorithm depicts a slower
convergence rate using the moderate fitness value, ~10-3, with moderate performance over
1500 iterations, but according to the results, it is showing better performance as compared
to SCA, SSA, and WOA. Next, the WOA represents a black line; it is less effective as it

PREPRINT

Modified Cuckoo Search Algorithm for Global Optimization

stagnates quickly with ~10-1 fitness value with 600 iterations without further improvements,
which depicts a local trap problem and premature convergence.

Hence, the proposed MCS-DIW provides satisfactory results with the lowest fitness
value to find the global optimal solution as compared to other selected SI algorithms.

Figure 11. Comparison of the Modified Cuckoo Search using decreasing inertia weight (MCS-DIW) algorithm
with Cuckoo Search Algorithm (CSA), Sine Cosine Algorithm (SCA), Search Sparrow Algorithm (SSA), and
Whale Optimization Algorithm (WOA) using the test function F9

Additionally, the mean and standard deviation (Std) comparison results are provided
in Table 4, where all the comparative SI algorithms’ results are compared using 2000
iterations and the 4 selected mathematical test functions. This comparison showed that the
proposed MCS-DIW provides better mean values compared to other selected algorithms.

Furthermore, Table 5 depicts the best cost values and CPU processing time comparison,
and comparatively, the proposed algorithm showed efficiency with less time compared to
the selected SI algorithms.

To validate the proposed MCS-DIW's effectiveness, Figure 12 depicts the statistical
analysis results for the Wilcoxon and Friedman statistical tests, where the final fitness values
of the different optimization SI algorithms along proposed MCS-DIW have been evaluated.
The proposed MCS-DIW showed a better convergence with significantly lower fitness values
than the other comparative swarm intelligence algorithms.

Table 6 indicates that the Wilcoxon results provide p-values < 0.05, indicating that the
proposed MCS-DIW significantly outperforms its counterparts.

PREPRINT

Kalsoom Safdar, Khairul Najmy Abdul Rani, Siti Julia Rosli, Mohd Aminudin Jamlos and Muhammad Usman Younus

Table 4
Mean and standard deviation global minimum comparison

Test
functions

MCS-DIW
mean/std.

CS
mean/std.

SCA
mean/std.

WOA
mean/std.

SSA
mean/std.

Iterations

F4 150.5354/
37.02811

211.1881/
56.34211

519.586/
33.1708

190.4882/
12.4564

635.3371/
38.45453

2000

F5 23802.9639/
28.5646

58123.004/
40.5653

1207313.7257/
39.87865

69099.5753/
39.65743

173143.7317/
17.45434

2000

F7 0.058221/
0.03221

0.12902/
0.10902

1.1749/
1.1130

0.11596/
0.12484

0.19193/
0.12184

2000

F9 0.035221/
0.05822

0.22602/
0.12902

1.1479/
1.1749

0.12596/
0.11596

0.18292/
0.19193

2000

Note. CS = Cuckoo Search; MCS-DIW = Modified Cuckoo Search using decreasing inertia weight;
WOA = Whale Optimization Algorithm; SCA = Sine Cosine Algorithm; SSA = Search Sparrow Algorithm;
std. = Standard deviation

Table 5
Best cost and CPU processing time comparison

Problems MCS-DIW
best cost/
CPU time

consumption

CS
best cost/
CPU time

consumption

SCA
best cost/ CPU

time
consumption

WOA
best cost/
CPU time

consumption

SSA
best cost/
CPU time

consumption

Iterations

F4 1.9557e-114/
0.57213

2.8581e-17/
1.4351

0/
0.14198

1.1235e19/
1.7858

0.45196/
0.35833

2000

F5 1.0788e-88/
0.5828

1.4398e-09/
1.7483

0/
0.16401

1.9121e08/
1.6112

0.00053215/
0.38028

2000

F7 0.005398912.1/
4

0.0093989/
10.0351

0.01339591.267/
3

6.1368/
4.9487

1.8422/
2.761

2000

F9 0.0068648/
1.3327

0.010044/
1.2569

0/
0.12485

0.0097856/
0.43367

0.082626/
0.33124

2000

Note. CS = Cuckoo Search; MCS-DIW = Modified Cuckoo Search using decreasing inertia weight; WOA
= Whale Optimization Algorithm; SCA = Sine Cosine Algorithm; SSA = Search Sparrow Algorithm; CPU =
Central processing unit

Table 6
Test Wilcoxon results for MCS-DIW

Comparative algorithms Wilcoxon Statistic p-value
MCS-DIW vs CS 0.0 0.0023
MCS-DIW vs SCA 0.0 0.0017
MCS-DIW vs WOA 1.0 0.0034
MCS-DIW vs SSA 0.0 0.0028

Note. MCS-DIW = Modified Cuckoo Search using decreasing inertia weight; CS = Cuckoo Search; SCA = Sine
Cosine Algorithm; WOA = Whale Optimization Algorithm; SSA = Search Sparrow Algorithm

PREPRINT

Modified Cuckoo Search Algorithm for Global Optimization

Figure 12. Comparison of the Modified Cuckoo Search using decreasing inertia weight (MCS-DIW) Algorithm
with original Cuckoo Search, Sine Cosine Algorithm (SCA), Search Sparrow Algorithm (SSA), and Whale
Optimization Algorithm (WOA) using the 10 different optimization test functions
Note. CSA = Cuckoo Search Algorithm

The results shown in Table 7 indicate better performance of the proposed MCS-DIW as
the p-value (p < 0.05) is extremely low compared to other comparative swarm intelligent
algorithms, ensuring the effectiveness of the proposed algorithm.

Table 7
Friedman statistical result

Statistical test Test value p-value
Friedman Test 38.32 9.63 × 10⁻⁸

CONCLUSION AND FUTURE WORKS

This research paper provides an improved variant of the MCS algorithm, proposed using the
sigmoid DIW to avoid premature convergence. Extensive investigations are conducted to
validate the performance of the MCS-DIW algorithm using optimization test functions. The
performance of the MCS-DIW algorithm is compared with a few different SI algorithms,
such as original CS, SCA, WOA, and SSA. The simulation experiments show that the

PREPRINT

Kalsoom Safdar, Khairul Najmy Abdul Rani, Siti Julia Rosli, Mohd Aminudin Jamlos and Muhammad Usman Younus

performance, stability, robustness, and convergence speed of the MCS-DIW algorithm
surpasses other SI counterparts. In sum, the MCS-DIW algorithm can effectively overcome
the local trap problem through its enhanced exploration capacity to find the best global
optimum. The proposed research significantly improved the performance of MCS-IW by
utilizing fewer tuning parameters and providing the fastest convergence compared to its
counterparts. Additionally, MCS-IW's local optima escaping ability ensured strong global
search capabilities. However, due to the heavy reliance on the randomized nature of nest and
Lévy flight replacements, there exists a problem of inconsistency and population diversity;
additional modifications are required to handle the inconsistencies and constrained
optimization problems effectively. In this regard, a more in-depth analysis of the proposed
MCS-DIW algorithm will be executed in both single-objective (SO) and multi-objective
(MO) real-world engineering problems, such as power system optimization, neural network
training, image reconstruction, data clustering, data classification, and error minimization.
Moreover, the MCS-IW algorithm will be integrated with other swarm intelligence
algorithms to hybridize the capabilities to find the maximum global optima. However, the
efficiency of the proposed algorithm can be improved by implementing quantum-inspired
techniques, parallel computing, and constraint-handling advanced mechanisms to enhance
the performance of large-scale optimization tasks for better balancing between exploration
and exploitation.

ACKNOWLEDGEMENTS

This research was funded by the Fundamental Research Grant Scheme (FRGS) under a
grant number of FRGS/1/2019/ICT02/UNIMAP/02/7.

REFERENCES
Abdul Rani, K. N., Abdulmalek, M., Rahim, H. A., Chin, N. S., & Abd Wahab, A. (2017). Hybridization of

strength pareto multiobjective optimization with modified cuckoo search algorithm for rectangular array.
Scientific Reports, 7, 46521. https://doi.org/10.1038/srep46521

Abdul Rani, K. N., & Malek, F. (2011). Preliminary study on cuckoo search parameters for symmetric linear
array geometry synthesis. In TENCON 2011-2011 IEEE Region 10 Conference (pp. 568–572). IEEE.
https://doi.org/10.1109/TENCON.2011.6129169

Abualigah, L., Ababneh, A., Ikotun, A. M., Zitar, R. A., Alsoud, A. R., Khodadadi, N., Ezugwu, A. E., Hanandeh,
E. S., & Jia, H. (2024). A survey of cuckoo search algorithm: Optimizer and new applications. In L.
Abualigah (Ed.), Metaheuristic optimization algorithms: Optimizers, analysis, and applications (pp.
45–57). Morgan Kaufmann. https://doi.org/10.1016/B978-0-443-13925-3.00018-2

Adeyelu, A. A., John, Z. S., Uga-Otor, S., Elusakin, O. E., & Godwin, I. R. (2024). An adaptation of Cuckoo
Search Algorithm in maximizing energy efficiency of Dynamic Source Routing Algorithm for Mobile
AdHoc Network. International Journal of Computer Applications, 186(9), 29-36.

PREPRINT

Modified Cuckoo Search Algorithm for Global Optimization

Adeyeye, O. J., & Akanbi, I. (2024). Optimization in systems engineering: A review of how data analytics and
optimization algorithms are applied. Computer Science and IT Research Journal, 5(4), 809–823. https://
doi.org/10.51594/csitrj.v5i4.1027

Ahmad, T., Sulaiman, M., Bassir, D., Alshammari, F. S., & Laouini, G. (2025). Enhanced numerical solutions
for fractional PDEs using Monte Carlo PINNs coupled with cuckoo search optimization. Fractal and
Fractional, 9(4), 225. https://doi.org/10.3390/fractalfract9040225

Almufti, S. M., Marqas, R. B., Asaad, R. R., & Shaban, A. A. (2025). Cuckoo search algorithm: Overview,
modifications, and applications. International Journal of Scientific World, 11(1), 1-9.

Aziz, R. M. (2022). Cuckoo search-based optimization for cancer classification: A new hybrid approach. Journal
of Computational Biology, 29(6), 565–584. https://doi.org/10.1089/cmb.2021.0410

Bharambe, U., Ramesh, R., Mahato, M., & Chaudhari, S. (2024). Synergies Between natural language
processing and swarm intelligence optimization: A comprehensive overview. In J. Valadi, K. P. Singh,
M. Ojha, & P. Siarry (Eds.), Advanced machine learning with evolutionary and metaheuristic techniques
(pp. 121–151). Springer. https://doi.org/10.1007/978-981-99-9718-3_6

Brezočnik, L., Fister, I., & Podgorelec, V. (2018). Swarm intelligence algorithms for feature selection: A review.
Applied Sciences, 8(9), 1521. https://doi.org/10.3390/app8091521

Chakraborty, A., & Kar, A. K. (2017). Swarm intelligence: A review of algorithms. In S. Patnaik, X. S. Yang,
& K. Nakamatsu (Eds.), Nature-inspired computing and optimization: Theory and applications (Vol. 10,
pp. 475–494). Springer. https://doi.org/10.1007/978-3-319-50920-4_19

Chakraborty, S., Saha, A. K., Ezugwu, A. E., Agushaka, J. O., Zitar, R. A., & Abualigah, L. (2023). Differential
evolution and its applications in image processing problems: A comprehensive review. Archives of
Computational Methods in Engineering, 30, 985–1040. https://doi.org/10.1007/s11831-022-09825-5

Chen, J., Xia, R., You, J., Yao, Q., Dai, Y., Zhang, J., Yao, J., & Guo, Y. (2024). Automatic optimal design
of field plate for silicon on insulator lateral double‐diffused metal oxide semiconductor using simulated
annealing algorithm. IET Power Electronics, 17(4), 487–493. https://doi.org/10.1049/pel2.12658

Cheraghi, N., Miri, M., & Rashki, M. (2023). An adaptive artificial neural network for reliability analyses
of complex engineering systems. Applied Soft Computing, 132, 109866. https://doi.org/10.1016/j.
asoc.2022.109866

Choudhary, S., Sugumaran, S., Belazi, A., & Abd El-Latif, A. A. (2023). Linearly decreasing inertia weight PSO
and improved weight factor-based clustering algorithm for wireless sensor networks. Journal of Ambient
Intelligence and Humanized Computing, 14, 6661-6679. https://doi.org/10.1007/s12652-021-03534-w

Cuong-Le, T., Minh, H.-L., Khatir, S., Wahab, M. A., Tran, M. T., & Mirjalili, S. (2021). A novel version of
Cuckoo search algorithm for solving optimization problems. Expert Systems with Applications, 186,
115669. https://doi.org/10.1016/j.eswa.2021.115669

Ghiaskar, A., Amiri, A., & Mirjalili, S. (2024). Polar fox optimization algorithm: A novel meta-heuristic
algorithm. Neural Computing and Applications, 36, 20983–21022. https://doi.org/10.1007/s00521-024-
10346-4

PREPRINT

Kalsoom Safdar, Khairul Najmy Abdul Rani, Siti Julia Rosli, Mohd Aminudin Jamlos and Muhammad Usman Younus

Habeb, A. A. A. A., Taresh, M. M., Li, J., Gao, Z., & Zhu, N. (2024). Enhancing medical image classification
with an advanced feature selection algorithm: A novel approach to improving the cuckoo search
algorithm by incorporating Caputo fractional order. Diagnostics, 14(11), 1191. https://doi.org/10.3390/
diagnostics14111191

Huang, S., & Zhou, J. (2024). An enhanced stability evaluation system for entry-type excavations: Utilizing a
hybrid bagging-SVM model, GP and kriging techniques. Journal of Rock Mechanics and Geotechnical
Engineering, 17(4), 2360-2373. https://doi.org/10.1016/j.jrmge.2024.05.024

Joshi, A. S., Kulkarni, O., Kakandikar, G. M., & Nandedkar, V. M. (2017). Cuckoo search optimization - A
review. Materials Today: Proceedings, 4(8), 7262–7269. https://doi.org/10.1016/j.matpr.2017.07.055

Kwakye, B. D., Li, Y., Mohamed, H. H., Baidoo, E., & Asenso, T. Q. (2024). Particle guided metaheuristic
algorithm for global optimization and feature selection problems. Expert Systems with Applications, 248,
123362. https://doi.org/10.1016/j.eswa.2024.123362

Liu, C., Wang, J., Zhou, L., & Rezaeipanah, A. (2022). Solving the multi-objective problem of IoT service
placement in fog computing using cuckoo search algorithm. Neural Processing Letters, 54, 1823–1854.
https://doi.org/10.1007/s11063-021-10708-2

Luo, X., Chen, J., Yuan, Y., & Wang, Z. (2024). Pseudo gradient-adjusted particle swarm optimization for
accurate adaptive latent factor analysis. In IEEE Transactions on Systems, Man, and Cybernetics: Systems
(Vol. 54, No. 4, pp. 2213-2226). IEEE. https://doi.org/10.1109/TSMC.2023.3340919

Mahmood, S., Bawany, N. Z., & Tanweer, M. R. (2023). A comprehensive survey of whale optimization
algorithm: Modifications and classification. Indonesian Journal of Electrical Engineering and Computer
Science, 29(2), 899-910. http://doi.org/10.11591/ijeecs.v29.i2.pp899-910

Mareli, M., & Twala, B. (2018). An adaptive Cuckoo search algorithm for optimisation. Applied Computing
and Informatics, 14(2), 107–115. https://doi.org/10.1016/j.aci.2017.09.001

Massat, M. B. (2018). A promising future for AI in breast cancer screening. Applied Radiology, 47(9), 22–25.

Meena, K. S., Singh, S. S., & Singh, K. (2024). Cuckoo search optimization-based influence maximization in
dynamic social networks. ACM Transactions on the Web, 18(4), 1–25. https://doi.org/10.1145/3690644

Mohammed, B. A., Zhuk, O., Vozniak, R., Borysov, I., Petrozhalko, V., Davydov, I., Borysov, O., Yefymenko,
O., Protas, N., & Kashkevich, S. (2023). Improvement of the solution search method based on the
cuckoo algorithm. Eastern-European Journal of Enterprise Technologies, 2(4 (122)), 23-30. https://doi.
org/10.15587/1729-4061.2023.277608

Nickabadi, A., Ebadzadeh, M. M., & Safabakhsh, R. (2011). A novel particle swarm optimization algorithm
with adaptive inertia weight. Applied Soft Computing, 11(4), 3658–3670. https://doi.org/10.1016/j.
asoc.2011.01.037

Saka, M. P., Doğan, E., & Aydogdu, I. (2013). Analysis of swarm intelligence–based algorithms for constrained
optimization. In X.-S. Yang, R. Xiao, & M. Karamanoglu (Eds.), Swarm intelligence and bio-inspired
computation: Theory and applications (pp. 25–48). Elsevier. https://doi.org/10.1016/B978-0-12-405163-
8.00002-8

PREPRINT

Modified Cuckoo Search Algorithm for Global Optimization

Sekyere, Y. O. M., Effah, F. B., & Okyere, P. Y. (2024). An enhanced particle swarm optimization algorithm
via adaptive dynamic inertia weight and acceleration coefficients. Journal of Electronics and Electrical
Engineering, 3, 53–67. https://doi.org/10.37256/jeee.3120243868

Shi, Y., & Eberhart, R. C. (1998). Parameter selection in particle swarm optimization. In V. W. Porto, N.
Saravanan, D. Waagen, & A. E. Eiben (Eds.), Evolutionary Programming VII: 7th International Conference
(Vol. 1447, pp. 591–600). Springer. https://doi.org/10.1007/BFb0040810

Sohail, A. (2023). Genetic algorithms in the fields of artificial intelligence and data sciences. Annals of Data
Science, 10, 1007–1018. https://doi.org/10.1007/s40745-021-00354-9

Thaher, T., Sheta, A., Awad, M., & Aldasht, M. (2024). Enhanced variants of crow search algorithm boosted
with cooperative based island model for global optimization. Expert Systems with Applications, 238(Part
A), 121712. https://doi.org/10.1016/j.eswa.2023.121712

Tian, Y., Zhang, D., Zhang, H., Zhu, J., & Yue, X. (2024). An improved cuckoo search algorithm for global
optimization. Cluster Computing, 27, 8595-8619. https://doi.org/10.1007/s10586-024-04410-w

Umar, S. U., Rashid, T. A., Ahmed, A. M., Hassan, B. A., & Baker, M. R. (2024). Modified Bat Algorithm: A
newly proposed approach for solving complex and real-world problems. Soft Computing, 28, 7983–7998.
https://doi.org/10.1007/s00500-024-09761-5

Wei, J., & Niu, H. (2022). A ranking-based adaptive cuckoo search algorithm for unconstrained optimization.
Expert Systems with Applications, 204, 117428. https://doi.org/10.1016/j.eswa.2022.117428

Xue, X., Shanmugam, R., Palanisamy, S., Khalaf, O. I., Selvaraj, D., & Abdulsahib, G. M. (2023). A hybrid
cross layer with Harris-hawk-optimization-based efficient routing for wireless sensor networks. Symmetry,
15(2), 438. https://doi.org/10.3390/sym15020438

Yang, Q., Wang, Y., Zhang, J., & Gao, H. (2024). An adaptive operator selection cuckoo search for parameter
extraction of photovoltaic models. Applied Soft Computing, 166, 112221. https://doi.org/10.1016/j.
asoc.2024.112221

Zangana, H. M., Sallow, Z. B., Alkawaz, M. H., & Omar, M. (2024). Unveiling the collective wisdom: A review
of swarm intelligence in problem solving and optimization. Inform: Jurnal Ilmiah Bidang Teknologi
Informasi Dan Komunikasi, 9(2), 101–110. https://doi.org/10.25139/inform.v9i2.7934

Zdiri, S., Chrouta, J., & Zaafouri, A. (2021). An expanded heterogeneous particle swarm optimization based
on adaptive inertia weight. Mathematical Problems in Engineering, 2021(1), 4194263. https://doi.
org/10.1155/2021/4194263

Zheng, W., Si, M., Sui, X., Chu, S., & Pan, J. (2023). Application of a parallel adaptive Cuckoo Search algorithm
in the rectangle layout problem. CMES-Computer Modeling in Engineering and Sciences, 135(3), 2173-
2196. https://doi.org/10.32604/cmes.2023.019890

Zheng, Y.-L., Ma, L.-H., Zhang, L.-Y., & Qian, J.-X. (2003). Empirical study of particle swarm optimizer with
an increasing inertia weight. In The 2003 Congress on Evolutionary Computation (pp. 221–226). IEEE.
https://doi.org/10.1109/CEC.2003.1299578

